Publication date: Feb 08, 2024
It is well known that interfaces in nanomaterials can act as ultra-fast short-circuit diffusion paths, as originating from local structural, chemical and/or electronic modifications at the interface. For example, the interface diffusivity of Cu in Cu/AlN nanomultilayers can be up to two orders of magnitude higher as compared to the bulk, which may promote interfacial premelting of Cu. Extensive ab initio calculations of vacancy formation and migration energies in Cu/AlN nanomultilayers were performed to arrive at the fundamental understanding of such anomalously fast interface diffusion phenomena. It was found that both the metallic Al-terminated interface and the mixed-bonded N-terminated interface promote high atomic interface mobilities by lowering the vacancy formation and vacancy migration energies in the interfacial Cu planes. Moreover, the out-of-plane vacancy migration energies highlights a strong tendency of vacancy segregation toward both interfaces.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
data.zip
MD5md5:82e2ed445831c3cb98cc800546299420
|
9.7 GiB | The data is provided for ab initio calculations of vacancy formation energies and migration barriers in the Cu/AlN nano-multilayers. For each subfolder, the separate README files are provided. |
2024.24 (version v1) [This version] | Feb 08, 2024 | DOI10.24435/materialscloud:kd-m4 |