Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling


JSON Export

{
  "metadata": {
    "title": "Exploring DFT+U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling", 
    "references": [
      {
        "type": "Preprint", 
        "url": "https://arxiv.org/abs/2109.07617", 
        "citation": "P. Tavadze, R. Boucher, G. Avenda\u00f1o-Franco, K. X. Kocan, S. Singh, V. Dovale-Farelo, W. Ibarra-Hern\u00e1ndez, M. B. Johnson, D. S. Mebane, A. H. Romero, arXiv:2109.07617 [Preprint.] (2021)"
      }
    ], 
    "_files": [
      {
        "description": "README.txt", 
        "key": "README.txt", 
        "checksum": "md5:9c33f83b5fb86466f00e35601b7dc7f6", 
        "size": 1145
      }, 
      {
        "description": "Compressed file contains 4 main directories,\n1.distribution: The probability density generated from exploring the U and J parameter space using the Bayesian calibration assisted by a Markov chain Monte Carlo\n2.evaluation_stage: Performance of the (U,J) from MCMC for the evaluation (FeO, \u03b1\u2212Fe2O3, AlFeB2, Fe5PB2, Fe5SiB2)\n3.exploration_stage: Performance of the (U,J) from MCMC for the exploration (Fe, Fe2P, Fe3Ge, BaFeO3, SrFeO3)\n4.U3.8_J0.7: Performance of the (U,J) from Sasioglu et al PRB 2011.", 
        "key": "DataAvailnpj.tar.gz", 
        "checksum": "md5:c948234392cbfebd4826319eb43d6eac", 
        "size": 3893919
      }
    ], 
    "keywords": [
      "DFT+U", 
      "Markov chain Monte Carlo", 
      "MCMC", 
      "Bayesian calibration"
    ], 
    "status": "published", 
    "mcid": "2021.188", 
    "publication_date": "Nov 03, 2021, 14:44:06", 
    "license": "Creative Commons Attribution 4.0 International", 
    "license_addendum": null, 
    "is_last": true, 
    "version": 1, 
    "doi": "10.24435/materialscloud:16-d6", 
    "conceptrecid": "1020", 
    "edited_by": 100, 
    "_oai": {
      "id": "oai:materialscloud.org:1021"
    }, 
    "description": "Density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard corrections to treat strongly correlated electronic states. Unfortunately, the exact values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.", 
    "owner": 496, 
    "contributors": [
      {
        "email": "petavazohi@mix.wvu.edu", 
        "givennames": "Pedram", 
        "familyname": "Tavadze", 
        "affiliations": [
          "Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA"
        ]
      }, 
      {
        "email": "reb0019@mix.wvu.edu", 
        "givennames": "Reese", 
        "familyname": "Boucher", 
        "affiliations": [
          "Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA"
        ]
      }, 
      {
        "email": "guavendanofranco@mail.wvu.edu", 
        "givennames": "Guillermo", 
        "familyname": "Avenda\u00f1o-Franco", 
        "affiliations": [
          "Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA"
        ]
      }, 
      {
        "email": "kxkocan@mix.wvu.edu", 
        "givennames": "Keenan X.", 
        "familyname": "Kocan", 
        "affiliations": [
          "Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA"
        ]
      }, 
      {
        "email": "ss3267@physics.rutgers.edu", 
        "givennames": "Sobhit", 
        "familyname": "Singh", 
        "affiliations": [
          "Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA"
        ]
      }, 
      {
        "email": "vd0020@mix.wvu.edu", 
        "givennames": "Viviana", 
        "familyname": "Dovale-Farelo", 
        "affiliations": [
          "Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA"
        ]
      }, 
      {
        "email": "wilfredo.ibarra@correo.buap.mx", 
        "givennames": "Wilfredo", 
        "familyname": "Ibarra-Hern\u00e1ndez", 
        "affiliations": [
          "Facultad de Ingenier\u00eda, Benem\u00e9rita Universidad Aut\u00f3noma de Puebla, Apdo. Postal J-39, Puebla, Pue. 72570, M\u00e9xico"
        ]
      }, 
      {
        "email": "matthew.johnson@mail.wvu.edu", 
        "givennames": "Matthew B", 
        "familyname": "Johnson", 
        "affiliations": [
          "Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA"
        ]
      }, 
      {
        "email": "David.Mebane@mail.wvu.edu", 
        "givennames": "David S.", 
        "familyname": "Mebane", 
        "affiliations": [
          "Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA"
        ]
      }, 
      {
        "email": "aldo.romero@mail.wvu.edu", 
        "givennames": "Aldo H", 
        "familyname": "Romero", 
        "affiliations": [
          "Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA"
        ]
      }
    ], 
    "id": "1021"
  }, 
  "revision": 5, 
  "created": "2021-09-16T14:50:26.197383+00:00", 
  "updated": "2021-12-06T14:19:45.644346+00:00", 
  "id": "1021"
}