Sensitivity benchmarks of structural representations for atomic-scale machine learning


JSON Export

{
  "created": "2021-09-16T23:18:08.480668+00:00", 
  "metadata": {
    "publication_date": "Sep 17, 2021, 13:48:21", 
    "mcid": "2021.149", 
    "_files": [
      {
        "key": "asymmetric_ch4.chemiscope.json.gz", 
        "description": "2d manifold around random asymmetric structure", 
        "size": 63974, 
        "checksum": "md5:92e76339ffd8b20ef12d634475910a4e"
      }, 
      {
        "key": "symmetric_ch4.chemiscope.json.gz", 
        "description": "2d manifold around ground state", 
        "size": 42272, 
        "checksum": "md5:df08fd38bd82b76ab2349ffe78f70c9a"
      }, 
      {
        "key": "degenerate_ch4.chemiscope.json.gz", 
        "description": "2d manifold around degenerate structure", 
        "size": 59496, 
        "checksum": "md5:d5bfbe6afd3133945498006f1830cb00"
      }, 
      {
        "key": "readme.txt", 
        "description": "readme", 
        "size": 1496, 
        "checksum": "md5:42ac35280baa1bac75249d65577e966b"
      }
    ], 
    "id": "1024", 
    "title": "Sensitivity benchmarks of structural representations for atomic-scale machine learning", 
    "is_last": true, 
    "description": "This dataset contains three sets of CH4 geometries that are distorted along special directions, to reveal the sensitivity to atomic displacements of structural descriptors used in machine-learning applications. The structures are stored in a format that can be visualized on http://chemiscope.org, and contain also DFT-computed energies, as well as the sensitivity analysis of four different kinds of features.", 
    "keywords": [
      "DFT", 
      "methane", 
      "sensitivity", 
      "representations", 
      "machine learning", 
      "MARVEL", 
      "SNSF", 
      "ERC"
    ], 
    "references": [
      {
        "citation": "Sergey N. Pozdnyakov,  Liwei Zhang,  Christoph Ortner,  Gabor Csanyi,  and Michele Ceriotti, Open Research Europe (submission in preparation)", 
        "type": "Preprint"
      }
    ], 
    "license": "Creative Commons Attribution Non Commercial 4.0 International", 
    "version": 1, 
    "contributors": [
      {
        "familyname": "Pozdnyakov", 
        "affiliations": [
          "Laboratory of Computational Science and Modelling, Institute of Materials, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland"
        ], 
        "givennames": "Sergey", 
        "email": "sergey.pozdnyakov@epfl.ch"
      }, 
      {
        "familyname": "Ceriotti", 
        "affiliations": [
          "Laboratory of Computational Science and Modelling, Institute of Materials, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Switzerland"
        ], 
        "givennames": "Michele", 
        "email": "michele.ceriotti@epfl.ch"
      }
    ], 
    "owner": 190, 
    "edited_by": 100, 
    "conceptrecid": "1023", 
    "status": "published", 
    "license_addendum": null, 
    "_oai": {
      "id": "oai:materialscloud.org:1024"
    }, 
    "doi": "10.24435/materialscloud:7z-g6"
  }, 
  "updated": "2021-12-06T12:36:19.575143+00:00", 
  "id": "1024", 
  "revision": 7
}