<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Varandili, Seyedeh Behnaz</dc:creator> <dc:creator>Stoian, Dragos</dc:creator> <dc:creator>Vavra, Jan</dc:creator> <dc:creator>Rossi, Kevin</dc:creator> <dc:creator>Pankhurst, James R</dc:creator> <dc:creator>Guntern, Yannick</dc:creator> <dc:creator>Lopez, Nuria</dc:creator> <dc:creator>Buonsanti, Raffaella</dc:creator> <dc:date>2021-10-22</dc:date> <dc:description>Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental–computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure–property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.</dc:description> <dc:identifier>https://archive.materialscloud.org/record/2021.165</dc:identifier> <dc:identifier>doi:10.24435/materialscloud:3r-gn</dc:identifier> <dc:identifier>mcid:2021.165</dc:identifier> <dc:identifier>oai:materialscloud.org:1051</dc:identifier> <dc:language>en</dc:language> <dc:publisher>Materials Cloud</dc:publisher> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>CO2RR</dc:subject> <dc:subject>DFT</dc:subject> <dc:subject>CO2</dc:subject> <dc:subject>Cu</dc:subject> <dc:subject>CuZn</dc:subject> <dc:subject>ERC</dc:subject> <dc:subject>H2020</dc:subject> <dc:subject>EPFL</dc:subject> <dc:subject>SNSF</dc:subject> <dc:title>Elucidating the structure-dependent selectivity towards methane and ethanol of CuZn in the CO2 electroreduction using tailored Cu/ZnO precatalysts</dc:title> <dc:type>Dataset</dc:type> </oai_dc:dc>