Double-Hybrid Density functionals for the condensed phase: gradients, stress tensor, and Auxiliary-Density Matrix Method acceleration
JSON Export
{
"metadata": {
"_oai": {
"id": "oai:materialscloud.org:1124"
},
"description": "Due to their high accuracy, Double-Hybrid Density functionals emerged to important methods for molecular electronic-structure calculations. The high computational costs of double-hybrid calculations in condensed phase and the lack of efficient gradient implementations thereof inhibit a wide applicability for periodic systems. We present an implementation of gradients for Double-Hybrid functional theory into CP2K. The Auxiliary Density Matrix Method (ADMM) reduces the overhead from the Hartree-Fock calculations providing an efficient and accurate methodology to tackle condensed phase systems. First applications to water containing systems of different densities and molecular crystals pave the way for advanced studies. We present large benchmark systems to discuss the efficiency of our methodology on modern super computing hardware.",
"conceptrecid": "1123",
"version": 1,
"edited_by": 576,
"mcid": "2021.216",
"id": "1124",
"license": "Creative Commons Attribution 4.0 International",
"contributors": [
{
"email": "Frederick.Stein@chem.uzh.ch",
"affiliations": [
"Department of Chemistry, Universit\u00e4t Z\u00fcrich (UZH), CH-8057 Z\u00fcrich, Switzerland"
],
"familyname": "Stein",
"givennames": "Frederick"
},
{
"email": "hutter@chem.uzh.ch",
"affiliations": [
"Department of Chemistry, Universit\u00e4t Z\u00fcrich (UZH), CH-8057 Z\u00fcrich, Switzerland"
],
"familyname": "Hutter",
"givennames": "J\u00fcrg"
}
],
"references": [
{
"citation": "T. K\u00fchne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Sch\u00fctt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Bor\u0161tnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. M\u00fcller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G.K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Gl\u00f6\u00df, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, J. Hutter, J. Chem. Phys. 152, 194103 (2020)",
"doi": "10.1063/5.0007045",
"url": "https://doi.org/10.1063/5.0007045",
"comment": "Paper in which CP2K is described",
"type": "Journal reference"
},
{
"citation": "M. Del Ben, J. Hutter, J. VandeVondele, J. Chem. Theory Comput. 9, 2654\u20132671 (2013)",
"doi": "10.1021/ct4002202",
"url": "https://doi.org/10.1021/ct4002202",
"comment": "Paper from which basis sets for H,C,N,O have been taken from",
"type": "Journal reference"
},
{
"citation": "J. Hutter, Repository \"GTH\" on Github",
"type": "Website",
"url": "https://github.com/juerghutter/GTH",
"comment": "Repository from which pseudopotentials have been taken from, last checked on 01 December 2021"
},
{
"citation": "C. Spreafico, J. VandeVondele, Phys. Chem. Chem. Phys. 16, 26144-26152 (2014)",
"doi": "10.1039/C4CP03981E",
"url": "http://dx.doi.org/10.1039/C4CP03981E",
"comment": "Paper from which basis sets of Titanium have been taken from",
"type": "Journal reference"
},
{
"citation": "F. Stein, J. Hutter, V. V. Rybkin, Molecules 25, 5174 (2020)",
"doi": "10.3390/molecules25215174",
"url": "https://www.mdpi.com/1420-3049/25/21/5174",
"comment": "Paper from which basis sets of Ar and Ne have been taken from",
"type": "Journal reference"
},
{
"citation": "M. Guidon, J. Hutter, J. VandeVondele",
"doi": "10.1021/ct1002225",
"url": "https://doi.org/10.1021/ct1002225",
"comment": "Paper from which auxiliary basis sets of H, C, N, O have been taken from",
"type": "Journal reference"
},
{
"citation": "The CP2K developers",
"type": "Software",
"url": "https://github.com/cp2k/cp2k",
"comment": "Github repository to the CP2K software package (last checked at 09.12.2021)."
}
],
"_files": [
{
"key": "README",
"checksum": "md5:3c9ff6fae892e1269e796d427fc3e156",
"description": "Information about the directory structure and hints about the benchmark set ups",
"size": 2578
},
{
"key": "DH_benchmark.tar.gz",
"checksum": "md5:cbdc8ec194f666b9520d0eaf97822e04",
"description": "Input and output files, Slurm run and output files, basis sets and pseudopotentials",
"size": 277138790
}
],
"is_last": true,
"keywords": [
"double-hybrid functional",
"density-functional theory",
"condensed matters",
"analytical gradients",
"auxiliary density matrix method",
"molecular crystals",
"benchmark",
"electronic structure method",
"SNSF",
"MARVEL/DD4",
"CSCS"
],
"owner": 257,
"status": "published",
"license_addendum": null,
"doi": "10.24435/materialscloud:3v-pw",
"publication_date": "Dec 09, 2021, 18:07:37",
"title": "Double-Hybrid Density functionals for the condensed phase: gradients, stress tensor, and Auxiliary-Density Matrix Method acceleration"
},
"id": "1124",
"updated": "2021-12-09T17:07:37.860608+00:00",
"created": "2021-12-01T12:04:44.979416+00:00",
"revision": 10
}