Fatigue database of high entropy alloys


JSON Export

{
  "metadata": {
    "is_last": true, 
    "publication_date": "Jan 24, 2022, 09:28:48", 
    "edited_by": 576, 
    "version": 1, 
    "license": "Creative Commons Attribution 4.0 International", 
    "license_addendum": null, 
    "_files": [
      {
        "checksum": "md5:ecfe43c30119dad048740d8103054e9a", 
        "key": "Fatigue database of High-entropy alloys.xlsx", 
        "size": 113150, 
        "description": "A summary of data on high-cycle fatigue, low-cycle fatigue, and fatigue crack growth for various high-entropy alloys."
      }
    ], 
    "mcid": "2022.11", 
    "keywords": [
      "High-entropy alloy", 
      "High-cycle fatigue", 
      "Low-cycle fatigue", 
      "Fatigue crack growth rate"
    ], 
    "contributors": [
      {
        "givennames": "Shiyi", 
        "email": "schen50@vols.utk.edu", 
        "familyname": "Chen", 
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville TN, USA"
        ]
      }, 
      {
        "givennames": "Xuesong", 
        "email": "xfan5@vols.utk.edu", 
        "familyname": "Fan", 
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville TN, USA"
        ]
      }, 
      {
        "givennames": "Weidong", 
        "email": "lei432378yu@gmail.com", 
        "familyname": "Li", 
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville TN, USA"
        ]
      }, 
      {
        "givennames": "Baldur", 
        "email": "baldur@imagars.com", 
        "familyname": "Steingrimsson", 
        "affiliations": [
          "Imagars LLC, Hillsboro OR, USA"
        ]
      }, 
      {
        "givennames": "Peter", 
        "email": "pliaw@utk.edu", 
        "familyname": "Liaw", 
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville TN, USA"
        ]
      }
    ], 
    "status": "published", 
    "doi": "10.24435/materialscloud:s6-39", 
    "title": "Fatigue database of high entropy alloys", 
    "id": "1213", 
    "description": "Fatigue failure of metallic structures is of great concern to industrial applications. A material will not be able to practically useful if it is prone to fatigue failure. To take the advantage of lately emerged high entropy alloys (HEAs) for designing novel fatigue-resistant alloys, we compiled a fatigue database of HEAs from the literature reported till the yearend of 2021. The database is subdivided into three categories, i.e., low-cycle fatigue (LCF), high-cycle fatigue (HCF), and fatigue crack growth rate (FCGR), which contains 15, 23, and 28 distinct data records, respectively. Each data record in any of three categories is characteristic of a summary, which is comprised of alloy composition, key fatigue properties, and additional information influential to or interrelated with fatigue (e.g., material processing history, phase constitution, grain size, uniaxial tensile properties, and fatigue testing conditions), and an individual dataset, which makes up the original fatigue testing curve.", 
    "owner": 613, 
    "_oai": {
      "id": "oai:materialscloud.org:1213"
    }, 
    "conceptrecid": "1212", 
    "references": [
      {
        "doi": "10.1016/j.msea.2020.139781", 
        "url": "https://doi.org/10.1016/j.msea.2020.139781", 
        "citation": "Lu, K., Chauhan, A., Litvinov, D., Walter, M., Tirunilai, A. S., Freudenberger, J., Kauffmann, A., Heilmaier, M., & Aktaa, J. (2020). High-temperature low cycle fatigue behavior of an equiatomic CoCrFeMnNi high-entropy alloy. Materials Science and Engineering A, 791(May), 139781.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.scriptamat.2020.113667", 
        "url": "https://doi.org/10.1016/j.scriptamat.2020.113667", 
        "citation": "Lu, K., Chauhan, A., Walter, M., Tirunilai, A. S., Schneider, M., Laplanche, G., Freudenberger, J., Kauffmann, A., Heilmaier, M., & Aktaa, J. (2021). Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi. Scripta Materialia, 194, 113667.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.msea.2020.139661", 
        "url": "https://doi.org/10.1016/j.msea.2020.139661", 
        "citation": "Shams, S. A. A., Jang, G., Won, J. W., Bae, J. W., Jin, H., Kim, H. S., & Lee, C. S. (2020). Low-cycle fatigue properties of CoCrFeMnNi high-entropy alloy compared with its conventional counterparts. Materials Science and Engineering A, 792(June), 139661.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.msea.2021.140985", 
        "url": "https://doi.org/10.1016/j.msea.2021.140985", 
        "citation": "Shams, S. A. A., Kim, G., Won, J. W., Kim, J. N., Kim, H. S., & Lee, C. S. (2021). Effect of grain size on the low-cycle fatigue behavior of carbon-containing high-entropy alloys. Materials Science & Engineering A, 810(February), 140985.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.actamat.2020.116540", 
        "url": "https://doi.org/10.1016/j.actamat.2020.116540", 
        "citation": "Picak, S., Wegener, T., Sajadifar, S. V, Sobrero, C., Richter, J., Kim, H., Niendorf, T., Karaman, I., Materials, W., & Kassel, U. (2021). Acta Materialia On the low cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. Acta Materialia, 205, 116540.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.scriptamat.2017.09.013", 
        "url": "https://doi.org/10.1016/j.scriptamat.2017.09.013", 
        "citation": "Niendorf, T., Wegener, T., Li, Z., & Raabe, D. (2018). Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scripta Materialia, 143, 63\u201367.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1038/s41467-021-23689-6", 
        "url": "https://doi.org/10.1038/s41467-021-23689-6", 
        "citation": "Feng, R., Rao, Y., Liu, C., Xie, X., Yu, D., Chen, Y., Ghazisaeidi, M., Ungar, T., Wang, H., An, K., & Liaw, P. K. (2021). Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nature Communications, 12(1), 1\u201310.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.actamat.2021.117089", 
        "url": "https://doi.org/10.1016/j.actamat.2021.117089", 
        "citation": "Lu, K., Chauhan, A., Tirunilai, A. S., & Freudenberger, J. (n.d.). Deformation mechanisms of CoCrFeMnNi high-entropy alloy under low-cycle-fatigue loading. 1\u201327.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.actamat.2012.06.046", 
        "url": "https://doi.org/10.1016/j.actamat.2012.06.046", 
        "citation": "\"Hemphill, M.A., Yuan, T., Wang, G.Y., Yeh, J.W., Tsai, C.W., Chuang, A. and Liaw, P.K., 2012. Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys. Acta Materialia, 60(16), pp.5723-5734.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.scriptamat.2018.07.022", 
        "url": "https://doi.org/10.1016/j.scriptamat.2018.07.022", 
        "citation": "Shukla, S., Wang, T., Cotton, S. and Mishra, R.S., 2018. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scripta Materialia, 156, pp.105-109.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1080/21663831.2018.1523240", 
        "url": "https://doi.org/10.1080/21663831.2018.1523240", 
        "citation": "Liu, K., Nene, S.S., Frank, M., Sinha, S. and Mishra, R.S., 2018. Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy. Materials Research Letters, 6(11), pp.613-619.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.mtla.2018.09.040", 
        "url": "https://doi.org/10.1016/j.mtla.2018.09.040", 
        "citation": "Guennec, B., Kentheswaran, V., Perri\u00e8re, L., Ueno, A., Guillot, I., Couzini\u00e9, J.P. and Dirras, G., 2018. Four-point bending fatigue behavior of an equimolar BCC HfNbTaTiZr high-entropy alloy: macroscopic and microscopic viewpoints. Materialia, 4, pp.348-360.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.scriptamat.2018.08.048", 
        "url": "https://doi.org/10.1016/j.scriptamat.2018.08.048", 
        "citation": "Liu, K., Komarasamy, M., Gwalani, B., Shukla, S. and Mishra, R.S., 2019. Fatigue behavior of ultrafine grained triplex Al0. 3CoCrFeNi high entropy alloy. Scripta Materialia, 158, pp.116-120.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.msea.2019.06.012", 
        "url": "https://doi.org/10.1016/j.msea.2019.06.012", 
        "citation": "Liu, K., Gwalani, B., Komarasamy, M., Shukla, S., Wang, T. and Mishra, R.S., 2019. Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy. Materials Science and Engineering: A, 760, pp.225-230.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.3390/met9101110", 
        "url": "https://doi.org/10.3390/met9101110", 
        "citation": "Chlup, Z., Fintov\u00e1, S., Hadraba, H., Kub\u011bna, I., Vil\u00e9mov\u00e1, M. and Mat\u011bj\u00ed\u010dek, J., 2019. Fatigue behaviour and crack initiation in CoCrFeNiMn high-entropy alloy processed by powder metallurgy. Metals, 9(10), p.1110.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.jmst.2018.09.068", 
        "url": "https://doi.org/10.1016/j.jmst.2018.09.068", 
        "citation": "Tian, Y.Z., Sun, S.J., Lin, H.R. and Zhang, Z.F., 2019. Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation. Journal of materials science & technology, 35(3), pp.334-340.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.ijfatigue.2019.105418", 
        "url": "https://doi.org/10.1016/j.ijfatigue.2019.105418", 
        "citation": "Suzuki, K., Koyama, M., Hamada, S., Tsuzaki, K. and Noguchi, H., 2020. Planar slip-driven fatigue crack initiation and propagation in an equiatomic CrMnFeCoNi high-entropy alloy. International Journal of Fatigue, 133, p.105418.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.msea.2019.138358", 
        "url": "https://doi.org/10.1016/j.msea.2019.138358", 
        "citation": "Kashaev, N., Ventzke, V., Petrov, N., Horstmann, M., Zherebtsov, S., Shaysultanov, D., Sanin, V. and Stepanov, N., 2019. Fatigue behaviour of a laser beam welded CoCrFeNiMn-type high entropy alloy. Materials Science and Engineering: A, 766, p.138358.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.intermet.2019.106486", 
        "url": "https://doi.org/10.1016/j.intermet.2019.106486", 
        "citation": "Kim, Y.K., Ham, G.S., Kim, H.S. and Lee, K.A., 2019. High-cycle fatigue and tensile deformation behaviors of coarse-grained equiatomic CoCrFeMnNi high entropy alloy and unexpected hardening behavior during cyclic loading. Intermetallics, 111, p.106486.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1007/s12540-020-00786-7", 
        "url": "https://doi.org/10.1007/s12540-020-00786-7", 
        "citation": "Lee, G. T., Won, J. W., Lim, K. R., Kang, M., Kwon, H. J., Na, Y. S., & Choi, Y. S. (2020). Effect of Microstructural Features on the High-Cycle Fatigue Behavior of CoCrFeMnNi High-Entropy Alloys Deformed at Room and Cryogenic Temperatures. Metals and Materials International.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.msea.2020.139034", 
        "url": "https://doi.org/10.1016/j.msea.2020.139034", 
        "citation": "Ghomsheh, M. Z., Khatibi, G., Weiss, B., Lederer, M., Schwarz, S., Steiger-Thirsfeld, A., Tikhonovsky, M. A., Tabachnikova, E. D., & Schafler, E. (2020). High cycle fatigue deformation mechanisms of a single phase CrMnFeCoNi high entropy alloy. Materials Science and Engineering A, 777(January), 139034.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.addma.2020.101832", 
        "url": "https://doi.org/10.1016/j.addma.2020.101832", 
        "citation": "Kim, Y., Baek, M., Yang, S., & Lee, K. (2021). In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy. Additive Manufacturing, 38(December 2020), 101832.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.1016/j.actamat.2015.07.004", 
        "url": "https://doi.org/10.1016/j.actamat.2015.07.004", 
        "citation": "Tang, Z., Yuan, T., Tsai, C. W., Yeh, J. W., Lundin, C. D., & Liaw, P. K. (2015). Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Materialia, 99, 247\u2013258.", 
        "type": "Journal reference"
      }, 
      {
        "doi": "10.2139/ssrn.3708757", 
        "url": "https://doi.org/10.2139/ssrn.3708757", 
        "citation": "Liaw, P. K., Chen, S., Tseng, K.-K., Yeh, J.-W., Liu, T., & Meng, F. (2020). Remarkable High-Cycle Fatigue Resistance of the TiZrNbHfTa High-Entropy Alloy and Associated Mechanisms. SSRN Electronic Journal, 1\u201343.", 
        "type": "Journal reference"
      }
    ]
  }, 
  "updated": "2022-01-24T08:28:48.446397+00:00", 
  "revision": 10, 
  "id": "1213", 
  "created": "2022-01-15T22:14:36.700812+00:00"
}