Controlling the TiN electrode work function at the atomistic level: a first principles investigation


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Calzolari, Arrigo</dc:creator>
  <dc:creator>Catellani, Alessandra</dc:creator>
  <dc:date>2022-02-01</dc:date>
  <dc:description>The paper reports on a theoretical description of work function of TiN, which is one of the most used materials for the realization of electrodes and gates in CMOS devices. Indeed, although the work function is a fundamental quantity in quantum mechanics and also in device physics, as it allows the understanding of band alignment at heterostructures and gap states formation at the metal/semiconductor interface, the role of defects and contaminants is rarely taken into account. Here, by using first principles simulations, we present an extensive study of the work function dependence on nitrogen vacancies and surface oxidation for different TiN surface orientations. The results complement and explain a number of existent experimental data, and provide a useful tool to tailoring transport properties of TiN electrodes in device simulations.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2022.20</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:pr-fw</dc:identifier>
  <dc:identifier>mcid:2022.20</dc:identifier>
  <dc:identifier>oai:materialscloud.org:1238</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Intersect</dc:subject>
  <dc:subject>DFT</dc:subject>
  <dc:subject>electrodes</dc:subject>
  <dc:subject>gates</dc:subject>
  <dc:subject>defects</dc:subject>
  <dc:subject>oxidation</dc:subject>
  <dc:subject>titanium nitride</dc:subject>
  <dc:title>Controlling the TiN electrode work function at the atomistic level: a first principles investigation</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>