Total energies of atoms from integral-equation radial solver


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Užulis, Jānis</dc:creator>
  <dc:creator>Gulans, Andris</dc:creator>
  <dc:date>2022-02-11</dc:date>
  <dc:description>We present a numerical tool for solving the non-relativistic Kohn-Sham problem for spherically-symmetric atoms. It treats the Schrödinger equation as an integral equation relying heavily on convolutions. The solver supports different types of exchange-correlation functionals including screened and long-range corrected hybrids. We implement a new method for treating range separation based on the complementary error function kernel. The present tool is applied in spin-restricted non-relativistic total energy calculations of atoms. A comparison with ultra-precise reference data[Cinal, JOMC 58, 1571 (2020)] shows a 14-digit agreement for Hartree-Fock results. We provide further benchmark data obtained with 5 different exchange-correlation functionals: VWN5 (the local-density approximation), PBE (the generalized gradient approximation), PBE0 and B3LYP (hybrids with a Fock exchange) and LC-BLYP (hybrid with a long-range corrected exchange).</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2022.25</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:2w-ev</dc:identifier>
  <dc:identifier>mcid:2022.25</dc:identifier>
  <dc:identifier>oai:materialscloud.org:1242</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>density-functional theory</dc:subject>
  <dc:subject>atoms</dc:subject>
  <dc:subject>hybrids</dc:subject>
  <dc:subject>high-precision</dc:subject>
  <dc:subject>hartree-fock</dc:subject>
  <dc:title>Total energies of atoms from integral-equation radial solver</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>