Phonon self-energy corrections: To screen, or not to screen


JSON Export

{
  "metadata": {
    "is_last": false, 
    "version": 1, 
    "title": "Phonon self-energy corrections: To screen, or not to screen", 
    "keywords": [
      "MARVEL/DD3", 
      "SNSF", 
      "H2020", 
      "PRACE", 
      "electron-phonon coupling", 
      "first principles", 
      "phonons", 
      "2D materials"
    ], 
    "description": "First-principles calculations of phonons are often based on the adiabatic approximation, and Brillouin-zone samplings that might not always be sufficient to capture the subtleties of Kohn anomalies. These shortcomings can be addressed through corrections to the phonon self-energy arising from the low-energy electrons. A well-founded correction method exists [Phys. Rev. B 82, 165111 (2010)], which only relies on adiabatically screened quantities. However, many-body theory suggests to use one bare electron-phonon vertex in the phonon self-energy [Rev. Mod. Phys. 89, 015003 (2017)] to avoid double counting. We assess the accuracy of both approaches in estimating the low-temperature phonons of monolayer TaS\u2082 and doped MoS\u2082. We find that the former yields excellent results at low computational cost due to its designed error cancellation to first order, while the latter becomes exact in the many-body limit but is not accurate in approximate contexts. We offer a third strategy based on downfolding to partially screened phonons and interactions [Phys. Rev. B 92, 245108 (2015)] to keep both advantages. This is the natural scheme to include the electron-electron interaction and tackle phonons in strongly correlated materials and nonadiabatic renormalization of the electron-phonon vertex.\n\nThis record contains (i) a patch for the PHonon and EPW codes of Quantum ESPRESSO, (ii) the Python scripts and data necessary to create all figures shown in our paper, (iii) a minimal working example of the optimization of quadrupole tensors, and (iv) the Quantum ESPRESSO input files we have used.", 
    "license": "GNU General Public License v2.0 or later", 
    "references": [
      {
        "url": "https://arxiv.org/abs/2212.11806", 
        "type": "Preprint", 
        "citation": "J. Berges, N. Girotto, T. Wehling, N. Marzari, S. Ponc\u00e9, arXiv:2212.11806 (2022)", 
        "comment": "Preprint where the data is discussed", 
        "doi": "10.48550/arXiv.2212.11806"
      }
    ], 
    "doi": "10.24435/materialscloud:9f-dn", 
    "conceptrecid": "1681", 
    "publication_date": "Mar 08, 2023, 18:43:02", 
    "edited_by": 576, 
    "_oai": {
      "id": "oai:materialscloud.org:1682"
    }, 
    "contributors": [
      {
        "affiliations": [
          "U Bremen Excellence Chair, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, University of Bremen, D-28359 Bremen, Germany"
        ], 
        "email": "jan.berges@uni-bremen.de", 
        "familyname": "Berges", 
        "givennames": "Jan"
      }, 
      {
        "affiliations": [
          "Institute of Physics, HR-10000 Zagreb, Croatia"
        ], 
        "familyname": "Girotto", 
        "givennames": "Nina"
      }, 
      {
        "affiliations": [
          "I. Institute of Theoretical Physics, University of Hamburg, D-22607 Hamburg, Germany", 
          "The Hamburg Centre for Ultrafast Imaging, D-22761 Hamburg, Germany"
        ], 
        "familyname": "Wehling", 
        "givennames": "Tim"
      }, 
      {
        "affiliations": [
          "Theory and Simulation of Materials (THEOS), \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015 Lausanne, Switzerland", 
          "National Centre for Computational Design and Discovery of Novel Materials (MARVEL), \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015 Lausanne, Switzerland", 
          "U Bremen Excellence Chair, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, University of Bremen, D-28359 Bremen, Germany"
        ], 
        "familyname": "Marzari", 
        "givennames": "Nicola"
      }, 
      {
        "affiliations": [
          "Institute of Condensed Matter and Nanosciences, Universit\u00e9 catholique de Louvain, BE-1348 Louvain-la-Neuve, Belgium", 
          "National Centre for Computational Design and Discovery of Novel Materials (MARVEL), \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015 Lausanne, Switzerland"
        ], 
        "familyname": "Ponc\u00e9", 
        "givennames": "Samuel"
      }
    ], 
    "owner": 965, 
    "license_addendum": null, 
    "mcid": "2023.39", 
    "_files": [
      {
        "size": 7176, 
        "checksum": "md5:70499f843ea92442729fb2caea309527", 
        "description": "Installation and usage instructions", 
        "key": "README.md"
      }, 
      {
        "size": 303245, 
        "checksum": "md5:6d6762f6910e250ac72ed75552986945", 
        "description": "Quantum ESPRESSO source-code modifications", 
        "key": "qe2screen.patch"
      }, 
      {
        "size": 59, 
        "checksum": "md5:d9a4c00e608a3537bf4642d3df2ad4da", 
        "description": "List of Python dependencies", 
        "key": "requirements.txt"
      }, 
      {
        "size": 1194, 
        "checksum": "md5:c60c28dbaa8978c7b5f53bcc49692824", 
        "description": "Python script and data to create Fig. 1", 
        "key": "fig01.tar.gz"
      }, 
      {
        "size": 1320, 
        "checksum": "md5:5ccbcb726dc4d127e0cd1785f9011f0c", 
        "description": "Python script and data to create Fig. 2", 
        "key": "fig02.tar.gz"
      }, 
      {
        "size": 355204, 
        "checksum": "md5:a74c6d6f5f88f5810ddf663cd16c8543", 
        "description": "Python script and data to create Fig. 3", 
        "key": "fig03.tar.gz"
      }, 
      {
        "size": 120212, 
        "checksum": "md5:f4e270639430063f692d693c023e159f", 
        "description": "Python script and data to create Fig. 4", 
        "key": "fig04.tar.gz"
      }, 
      {
        "size": 396594, 
        "checksum": "md5:892b890550167c8199e42f2d3f18ba17", 
        "description": "Python script and data to create Fig. 5", 
        "key": "fig05.tar.gz"
      }, 
      {
        "size": 32251, 
        "checksum": "md5:156f23a5c536abecdce504c68d246135", 
        "description": "Python script and data to create Fig. 6", 
        "key": "fig06.tar.gz"
      }, 
      {
        "size": 222954, 
        "checksum": "md5:8fbc989f96ac45e408322b8479e68898", 
        "description": "Python script and data to create Fig. 7", 
        "key": "fig07.tar.gz"
      }, 
      {
        "size": 98284, 
        "checksum": "md5:ed653639bfe8151db1dc3fdcf16ffc4f", 
        "description": "Python script and data to create Fig. 8", 
        "key": "fig08.tar.gz"
      }, 
      {
        "size": 57243, 
        "checksum": "md5:d85033bd2de7ef362db358c3b557692d", 
        "description": "Python script and data to create Fig. 9", 
        "key": "fig09.tar.gz"
      }, 
      {
        "size": 234256, 
        "checksum": "md5:5c4cfe42cf5cff5e652013170510c229", 
        "description": "Python script and data to create Fig. 10", 
        "key": "fig10.tar.gz"
      }, 
      {
        "size": 152804, 
        "checksum": "md5:505577b648c8c496b6863d798e512d0e", 
        "description": "Python script and data to create Fig. 11", 
        "key": "fig11.tar.gz"
      }, 
      {
        "size": 3384, 
        "checksum": "md5:cee0f6719bc9f2870867f6f7637fd4d1", 
        "description": "Example of optimization of quadrupole tensors", 
        "key": "fitQ.tar.gz"
      }, 
      {
        "size": 3428, 
        "checksum": "md5:f0bbc234d05b8adeccb1aa9a9d5bdb09", 
        "description": "Quantum ESPRESSO input files", 
        "key": "input.tar.gz"
      }
    ], 
    "id": "1682", 
    "status": "published"
  }, 
  "revision": 3, 
  "updated": "2023-07-03T12:07:56.680763+00:00", 
  "created": "2023-03-08T15:58:51.286001+00:00", 
  "id": "1682"
}