Electronic Supplementary Information to Temperature- and vacancy-concentration-dependence of heat transport in Li3ClO from multi-method numerical simulations

This archive contains the raw data for Figures 1 to 9 of this work and the dataset used for the training of the Neural Network model.

The dpgen_files.zip archive contains:

  • Li3ClO_deepmd_model.pb: the DeepMD trained model.
  • dataset: folder with raw data used for the training.
  • param.json: dpgen input file with the parameters of the model.
  • pseudo: folder with the pseudopotentials needed for the DFT calculations.

The generate_images.zip archive contains one folder per each figure in the paper; an empty Images folder that will contain the figures generated by the scripts; the run_all.sh bash script that generates all the figures in sequence; Nat.mplstyle is the matplotlib style file used by the python scripts. The folders Figure1 to Figure9 contain jupyter-notebooks and equivalent python scripts to generate the figures with same name in this work. For each folder, the Data subfolder contains:

Figure1:

  • output_anhar.dat.celldm: lattice parameter and linear thermal expansion coefficient as functions of temperature

Figure2:

  • Li3ClO_band.labelinfo.dat: Information on the high-symmetry points in the Brillouin zone.
  • Li3ClO_band.dat: Electronic band dispersion along high-symmetry lines in the Brillouin zone.

Figure3:

  • output_dos.dat: Phonon DOS.
  • output_pband.dat.?.?: Phonon band dispersion along high-symmetry lines in the Brillouin zone. Different files are associated to different sets of modes.

Figure4:

  • output_anhar.dat.macro_el: Voigt and Reuss Elastic Moduli as functions of temperature.
  • output_anhar.dat.macro_el_aver: Average Elastic Moduli as functions of temperature.
  • output_anhar.dat.el_cons: Isothermal elastic constants as functions of temperature.
  • output_anhar.dat.el_cons_s: Adiabatic elastic constants as functions of temperature.
  • output_anhar.dat.gamma_ph: Grueneiser parameter as a function of temperature.

Figure5:

  • kappa_slack_vs_T_Theta0K.dat: Slack lattice thermal conductivity as a function of temperature.
  • sma_full.30x30x30.out: Ab initio lattice thermal conductivity as a function of temperature.
  • kappa_BTE_FF.dat: Force-field lattice thermal conductivity as a function of temperature.

Figure6:

  • BTE.300K.w_3ph: Phonon lifetimes in with 3 phonon scattering processes.
  • BTE.300K.w_4ph: Phonon lifetimes in with 4 phonon scattering processes.
  • BTE.KappaTensorVsT_RTA_3-ph.0.1: Lattice thermal conductivity tensor with 3 phonon scattering processes.
  • BTE.KappaTensorVsT_RTA_4-ph.0.1: Lattice thermal conductivity tensor with 4 phonon scattering processes.

Figure7:

  • kappa_NN_x0.dat: NN based GK thermal conductivity with no vacancies.
  • kappa_NN_x0.1.dat: NN based GK thermal conductivity with a concentration of vacancies x=0.1.
  • kappa_FF_x0.dat: FF based GK thermal conductivity with no vacancies.
  • kappa_FF_x0.1.dat: FF based GK thermal conductivity with a concentration of vacancies x=0.1.

Figure8:

  • kappa_FF_vsT_vsx.json: FF based GK thermal conductivity as a function of vacancy concentration and temperature.

Figure9:

  • Euck.dat: Eucken's law fitting parameters of Eq. (7)
  • AF.dat: Allen-Feldan-like fitting parameters of Eq. (7)