This archive contains the raw data for Figures 1 to 9 of this work and the dataset used for the training of the Neural Network model.
The dpgen_files.zip
archive contains:
Li3ClO_deepmd_model.pb
: the DeepMD trained model.dataset
: folder with raw data used for the training.param.json
: dpgen input file with the parameters of the model.pseudo
: folder with the pseudopotentials needed for the DFT calculations.The generate_images.zip
archive contains one folder per each figure in the paper; an empty Images
folder that will contain the figures generated by the scripts; the run_all.sh
bash script that generates all the figures in sequence; Nat.mplstyle is the matplotlib style file used by the python scripts.
The folders Figure1
to Figure9
contain jupyter-notebooks and equivalent python scripts to generate the figures with same name in this work.
For each folder, the Data
subfolder contains:
Figure1:
output_anhar.dat.celldm
: lattice parameter and linear thermal expansion coefficient as functions of temperatureFigure2:
Li3ClO_band.labelinfo.dat
: Information on the high-symmetry points in the Brillouin zone.Li3ClO_band.dat
: Electronic band dispersion along high-symmetry lines in the Brillouin zone.Figure3:
output_dos.dat
: Phonon DOS.output_pband.dat.?.?
: Phonon band dispersion along high-symmetry lines in the Brillouin zone. Different files are associated to different sets of modes.Figure4:
output_anhar.dat.macro_el
: Voigt and Reuss Elastic Moduli as functions of temperature.output_anhar.dat.macro_el_aver
: Average Elastic Moduli as functions of temperature.output_anhar.dat.el_cons
: Isothermal elastic constants as functions of temperature.output_anhar.dat.el_cons_s
: Adiabatic elastic constants as functions of temperature.output_anhar.dat.gamma_ph
: Grueneiser parameter as a function of temperature.Figure5:
kappa_slack_vs_T_Theta0K.dat
: Slack lattice thermal conductivity as a function of temperature.sma_full.30x30x30.out
: Ab initio lattice thermal conductivity as a function of temperature.kappa_BTE_FF.dat
: Force-field lattice thermal conductivity as a function of temperature.Figure6:
BTE.300K.w_3ph
: Phonon lifetimes in with 3 phonon scattering processes.BTE.300K.w_4ph
: Phonon lifetimes in with 4 phonon scattering processes.BTE.KappaTensorVsT_RTA_3-ph.0.1
: Lattice thermal conductivity tensor with 3 phonon scattering processes.BTE.KappaTensorVsT_RTA_4-ph.0.1
: Lattice thermal conductivity tensor with 4 phonon scattering processes.Figure7:
kappa_NN_x0.dat
: NN based GK thermal conductivity with no vacancies.kappa_NN_x0.1.dat
: NN based GK thermal conductivity with a concentration of vacancies x=0.1.kappa_FF_x0.dat
: FF based GK thermal conductivity with no vacancies.kappa_FF_x0.1.dat
: FF based GK thermal conductivity with a concentration of vacancies x=0.1.Figure8:
kappa_FF_vsT_vsx.json
: FF based GK thermal conductivity as a function of vacancy concentration and temperature.Figure9:
Euck.dat
: Eucken's law fitting parameters of Eq. (7)AF.dat
: Allen-Feldan-like fitting parameters of Eq. (7)