EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Poncé, Samuel</dc:creator>
  <dc:creator>Margine, Elena Roxana</dc:creator>
  <dc:creator>Verdi, Carla</dc:creator>
  <dc:creator>Giustino, Feliciano</dc:creator>
  <dc:date>2020-06-21</dc:date>
  <dc:description>The EPW (Electron-Phonon coupling using Wannier functions) software is a Fortran90 code that uses density-functional perturbation theory and maximally localized Wannier functions for computing
electron-phonon couplings and related properties in solids accurately and efficiently. The EPW v4 program can be used to compute electron and phonon self-energies, linewidths, electron-phonon scattering
rates, electron-phonon coupling strengths, transport spectral functions, electronic velocities, resistivity, anisotropic superconducting gaps and spectral functions within the Migdal-Eliashberg theory. The
code now supports spin-orbit coupling, time-reversal symmetry in non-centrosymmetric crystals, polar materials, and k and q-point parallelization. Considerable effort was dedicated to optimization and
parallelization, achieving almost a ten times speedup with respect to previous releases. A computer test farm was implemented to ensure stability and portability of the code on the most popular compilers
and architectures. Since April 2016, version 4 of the EPW code is fully integrated in and distributed with the Quantum ESPRESSO package, and can be downloaded through at https://gitlab.com/QEF/q-e</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2020.58</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:tf-kf</dc:identifier>
  <dc:identifier>mcid:2020.58</dc:identifier>
  <dc:identifier>oai:materialscloud.org:416</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Electron-phonon coupling</dc:subject>
  <dc:subject>Wannier functions</dc:subject>
  <dc:subject>Electronic transport</dc:subject>
  <dc:subject>Superconductivity</dc:subject>
  <dc:subject>PRACE</dc:subject>
  <dc:title>EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>