The role of water in host-guest interaction


JSON Export

{
  "created": "2020-09-22T09:39:40.853704+00:00", 
  "metadata": {
    "mcid": "2020.112", 
    "references": [
      {
        "type": "Preprint", 
        "citation": "V. Rizzi, L. Bonati, N. Ansari, M. Parrinello, arXiv:2006.13274 (2020)", 
        "url": "https://arxiv.org/abs/2006.13274"
      }, 
      {
        "type": "Journal reference", 
        "doi": "10.1038/s41467-020-20310-0", 
        "citation": "V. Rizzi, L. Bonati, N. Ansari, M. Parrinello, Nat. Commun. 12, 93 (2021)", 
        "url": "https://www.nature.com/articles/s41467-020-20310-0"
      }
    ], 
    "doi": "10.24435/materialscloud:p3-1x", 
    "contributors": [
      {
        "email": "valerio.rizzi@phys.chem.ethz.ch", 
        "givennames": "Valerio", 
        "familyname": "Rizzi", 
        "affiliations": [
          "Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland", 
          "Facolt\u00e0 di Informatica, Istituto di Scienze Computazionali, Universit\u00e0 della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland"
        ]
      }, 
      {
        "email": "luigi.bonati@phys.chem.ethz.ch", 
        "givennames": "Luigi", 
        "familyname": "Bonati", 
        "affiliations": [
          "Department of Physics, ETH Zurich, 8092 Zurich, Switzerland", 
          "Facolt\u00e0 di Informatica, Istituto di Scienze Computazionali, Universit\u00e0 della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland"
        ]
      }, 
      {
        "email": "nansari@ethz.ch", 
        "givennames": "Narjes", 
        "familyname": "Ansari", 
        "affiliations": [
          "Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland", 
          "Facolt\u00e0 di Informatica, Istituto di Scienze Computazionali, Universit\u00e0 della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland"
        ]
      }, 
      {
        "email": "parrinello@phys.chem.ethz.ch", 
        "givennames": "Michele", 
        "familyname": "Parrinello", 
        "affiliations": [
          "Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland", 
          "Facolt\u00e0 di Informatica, Istituto di Scienze Computazionali, Universit\u00e0 della Svizzera Italiana, Via G. Buffi 13, 6900 Lugano, Switzerland", 
          "Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy"
        ]
      }
    ], 
    "license": "Creative Commons Attribution 4.0 International", 
    "_files": [
      {
        "key": "Deep-LDA_SAMPL5.zip", 
        "checksum": "md5:16de2c2cd867afff3bbb7e4e54063851", 
        "size": 3567846544, 
        "description": "Compressed input files for all the investigated systems in the paper. For each case, one trajectory with the corresponding collective variables output is provided."
      }, 
      {
        "key": "README.txt", 
        "checksum": "md5:cb78637dfc2a1a7e33f5bd45e9fe3d70", 
        "size": 1522, 
        "description": "README file"
      }
    ], 
    "is_last": true, 
    "title": "The role of water in host-guest interaction", 
    "id": "536", 
    "owner": 203, 
    "description": "One of the main applications of atomistic computer simulations is the calculation of ligand binding free energies. The accuracy of these calculations depends on the force field quality and on the thoroughness of configuration sampling. Sampling is an obstacle in simulations due to the frequent appearance of kinetic bottlenecks in the free energy landscape. Very often this difficulty is circumvented by enhanced sampling techniques. Typically, these techniques depend on the introduction of appropriate collective variables that are meant to capture the system's degrees of freedom. In ligand binding, water has long been known to play a key role, but its complex behaviour has proven difficult to fully capture. In this paper we combine machine learning with physical intuition to build a non-local and highly efficient water-describing collective variable. We use it to study a set of of host-guest systems from the SAMPL5 challenge. We obtain highly accurate binding free energies and good agreement with experiments. The role of water during the binding process is then analysed in some detail.", 
    "status": "published", 
    "edited_by": 203, 
    "conceptrecid": "535", 
    "publication_date": "Sep 28, 2020, 17:12:18", 
    "_oai": {
      "id": "oai:materialscloud.org:536"
    }, 
    "license_addendum": null, 
    "version": 1, 
    "keywords": [
      "ligand binding", 
      "water", 
      "host-guest", 
      "SAMPL5", 
      "enhanced sampling", 
      "Neural Network", 
      "molecular dynamics", 
      "SNSF", 
      "MARVEL/DD1", 
      "ERC"
    ]
  }, 
  "id": "536", 
  "updated": "2021-12-06T14:36:59.536894+00:00", 
  "revision": 8
}