Oxynitride thin films versus particle-based photoanodes: a comparative study for photoelectrochemical solar water splitting


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Haydous, Fatima</dc:creator>
  <dc:creator>Doebeli, Max</dc:creator>
  <dc:creator>Si, Wenpig</dc:creator>
  <dc:creator>Waag, Friedrich</dc:creator>
  <dc:creator>Li, Fei</dc:creator>
  <dc:creator>Pomjakushina, Ekaterina</dc:creator>
  <dc:creator>Wokaun, Alexander</dc:creator>
  <dc:creator>Gökce, Bibal</dc:creator>
  <dc:creator>Pergolesi, Daniele</dc:creator>
  <dc:creator>Lippert, Thomas</dc:creator>
  <dc:date>2020-11-25</dc:date>
  <dc:description>The solar water splitting process assisted by semiconductor photocatalysts attracts growing research interests worldwide for the production of hydrogen as a clean and sustainable energy carrier. Due to their optical and electrical properties several oxynitride materials show great promise for the fabrication of efficient photocatalysts for solar water splitting. This study reports a comparative investigation of particle- and thin films-based photocatalysts using three different oxynitride materials. The absolute comparison of the photoelectrochemical activities favors the particle-based electrodes due to the better absorption properties and larger electrochemical surface area. However, thin films surpass the particle-based photoelectrodes due to their more suitable morphological features that improve the separation and mobility of the photo-generated charge carriers. Our analysis identifies what specific insights into the properties of materials can be achieved with the two complementary approaches.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2020.151</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:p7-yt</dc:identifier>
  <dc:identifier>mcid:2020.151</dc:identifier>
  <dc:identifier>oai:materialscloud.org:592</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>oxynitride photoanode</dc:subject>
  <dc:subject>solar water splitting</dc:subject>
  <dc:subject>MARVEL</dc:subject>
  <dc:subject>pulsed laser deposition</dc:subject>
  <dc:subject>solar fuel</dc:subject>
  <dc:title>Oxynitride thin films versus particle-based photoanodes: a comparative study for photoelectrochemical solar water splitting</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>