Detecting electron-phonon coupling during photoinduced phase transition


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Suzuki, Takeshi</dc:creator>
  <dc:creator>Shinohara, Yasushi</dc:creator>
  <dc:creator>Lu, Yangfan</dc:creator>
  <dc:creator>Watanabe, Mari</dc:creator>
  <dc:creator>Xu, Jiadi</dc:creator>
  <dc:creator>L. Ishikawa, Kenichi</dc:creator>
  <dc:creator>Takagi, Hide</dc:creator>
  <dc:creator>Nohara, Minoru</dc:creator>
  <dc:creator>Katayama, Naoyuki</dc:creator>
  <dc:creator>Sawa, Hiroshi</dc:creator>
  <dc:creator>Fujisawa, Masami</dc:creator>
  <dc:creator>Kanai, Teruto</dc:creator>
  <dc:creator>Itatani, Jiro</dc:creator>
  <dc:creator>Mizokawa, Takashi</dc:creator>
  <dc:creator>Shin, Shik</dc:creator>
  <dc:creator>Okazaki, Kozo</dc:creator>
  <dc:date>2021-03-26</dc:date>
  <dc:description>This record contains the data supporting our recent findings on electron-phonon coupling during photoinduced phase transition.
We measure mode- and band-selective electron-phonon couplings during the photoinduced insulator-to-metal phase transition in Ta2NiSe5 (TNS) by frequency-domain angle-resolved photoemission spectroscopy (FDARPES).
FDARPES gives us rich information about which band more couples which phonon mode by seeing frequency components of time-resolved angle-resolved photoemission spectra. 
The experiments indicate 2 THz and 3 THz phonon modes associated with the metallic and semiconducting phases. 
To get a more atomistic picture of the oscillation, we perform phonon-mode calculations relying on the density-functional theory (DFT).

The computational scheme itself is very standard that density-functional-perturbation theory (DFPT) with semilocal or local exchange-correlation functionals. 
However, the required computational resources were rather huge, 25,000 core-hour, for a single DFPT with atomic position optimization having 0.1 eV/nm force accuracy for more satisfactory computational parameters. 
Therefore, the data must be worth as a benchmark within DFT-level calculation for TNS.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2021.49</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:c0-q1</dc:identifier>
  <dc:identifier>mcid:2021.49</dc:identifier>
  <dc:identifier>oai:materialscloud.org:793</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>DFT</dc:subject>
  <dc:subject>DFPT</dc:subject>
  <dc:subject>Experimental</dc:subject>
  <dc:subject>FDARPES</dc:subject>
  <dc:subject>electron-phonon coupling</dc:subject>
  <dc:subject>Ta2NiSe5</dc:subject>
  <dc:title>Detecting electron-phonon coupling during photoinduced phase transition</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>