Effects of interlayer confinement and hydration on capacitive charge storage in birnessite


JSON Export

{
  "id": "879", 
  "metadata": {
    "version": 1, 
    "conceptrecid": "878", 
    "is_last": true, 
    "_oai": {
      "id": "oai:materialscloud.org:879"
    }, 
    "publication_date": "Jul 16, 2021, 18:59:38", 
    "title": "Effects of interlayer confinement and hydration on capacitive charge storage in birnessite", 
    "id": "879", 
    "license": "Creative Commons Attribution 4.0 International", 
    "edited_by": 100, 
    "owner": 413, 
    "references": [
      {
        "type": "Journal reference", 
        "citation": "S. Boyd, K. Ganeshan, W.-Y. Tsai, T. Wu, S. Saeed, D.E. Jiang,, N. Balke, A.C.T. van Duin, V. Augustyn, accepted xx, xxxxx (xxxxx)"
      }
    ], 
    "mcid": "2021.110", 
    "contributors": [
      {
        "familyname": "Boyd", 
        "givennames": "Shelby", 
        "email": "skboyd2@ncsu.edu", 
        "affiliations": [
          "Department of Materials Science and Engineering, North Carolina State University, Raleigh NC 27606, USA"
        ]
      }, 
      {
        "familyname": "Ganeshan", 
        "givennames": "Karthik", 
        "email": "kug46@psu.edu", 
        "affiliations": [
          "Department of Mechanical Engineering, Pennsylvania State University, University Park PA 16803, USA"
        ]
      }, 
      {
        "familyname": "Tsai", 
        "givennames": "Wan-Yu", 
        "email": "tsaiw@ornl.gov", 
        "affiliations": [
          "Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA"
        ]
      }, 
      {
        "familyname": "Wu", 
        "givennames": "Tao", 
        "email": "wutaozky@outlook.com", 
        "affiliations": [
          "Department of Chemistry, University of California, Riverside, CA 92521, USA"
        ]
      }, 
      {
        "familyname": "Saeed", 
        "givennames": "Saeed", 
        "email": "smseed@ncsu.edu", 
        "affiliations": [
          "Department of Materials Science and Engineering, North Carolina State University, Raleigh NC 27606, USA"
        ]
      }, 
      {
        "familyname": "Jiang", 
        "givennames": "De-en", 
        "email": "djiang@ucr.edu", 
        "affiliations": [
          "Department of Chemistry, University of California, Riverside, CA 92521, USA"
        ]
      }, 
      {
        "familyname": "Balke", 
        "givennames": "Nina", 
        "email": "balken@ornl.gov", 
        "affiliations": [
          "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA"
        ]
      }, 
      {
        "familyname": "van Duin", 
        "givennames": "Adri", 
        "email": "acv13@psu.edu", 
        "affiliations": [
          "Department of Mechanical Engineering, Pennsylvania State University, University Park PA 16803, USA"
        ]
      }, 
      {
        "familyname": "Augustyn", 
        "givennames": "Veronica", 
        "email": "vaugust@ncsu.edu", 
        "affiliations": [
          "Department of Materials Science and Engineering, North Carolina State University, Raleigh NC 27606, USA"
        ]
      }
    ], 
    "description": "Nanostructured birnessite (\u03b4-MnO2) exhibits high specific capacitance and nearly ideal capacitive behavior in aqueous electrolytes, rendering it an important electrode material for low-cost, high power energy storage devices. The mechanism of electrochemical capacitance in birnessite has been described as both faradaic (involving redox) and non-faradaic (involving only electrostatic interactions). To clarify the capacitive mechanism, we characterized birnessite\u2019s response to applied potential using ex situ X-ray diffraction, electrochemical quartz crystal microbalance, in situ Raman spectroscopy, and operando atomic force microscopy dilatometry to provide a holistic understanding of its structural, gravimetric, and mechanical response. These observations are supported by atomic-scale simulations using density functional theory for the cation-intercalated structure of birnessite and ReaxFF-based molecular dynamics, as well as ReaxFF-based grand canonical Monte Carlo simulations on the dynamics at the birnessite/water/electrolyte interface. We show that capacitive charge storage in birnessite is governed by interlayer cation intercalation. We conclude that the intercalation appears capacitive due to the presence of nanoconfined interlayer structural water, which mediates the interaction between the intercalated cation and the birnessite host and leads to minimal structural changes.", 
    "status": "published", 
    "doi": "10.24435/materialscloud:kh-y2", 
    "_files": [
      {
        "key": "README.txt", 
        "description": "readme", 
        "size": 2334, 
        "checksum": "md5:1574ab992c45c725ad8845137102d9c9"
      }, 
      {
        "key": "Experimental.zip", 
        "description": "data files for electrochemistry, Raman, EQCM, XRD, and AFM", 
        "size": 1242778, 
        "checksum": "md5:1f8353cd214d9d3c4eb8433d2940b660"
      }, 
      {
        "key": "reaxff_raw.zip", 
        "description": "reaxff simulation input files and plots", 
        "size": 534051, 
        "checksum": "md5:eacb3e69eeb169ae83f671ec53c54ec0"
      }, 
      {
        "key": "MnO2-DFT-calculation.7z", 
        "description": "DFT data files", 
        "size": 43139, 
        "checksum": "md5:b1dcce33c8628e9531bf7aa05b66bee1"
      }
    ], 
    "license_addendum": null, 
    "keywords": [
      "oxide", 
      "energy storage", 
      "electrochemistry"
    ]
  }, 
  "revision": 7, 
  "updated": "2021-07-16T16:59:38.873395+00:00", 
  "created": "2021-05-31T03:01:42.026695+00:00"
}