Accurate Characterization of the Pore Volume in Microporous Crystalline Materials (Data Download)


JSON Export

{
  "revision": 1, 
  "created": "2020-05-12T13:52:04.594020+00:00", 
  "metadata": {
    "is_last": true, 
    "owner": 69, 
    "references": [
      {
        "type": "Journal reference", 
        "citation": "Ongari, D.; Boyd, P.G.; Barthel, S.; Witman, M.; Haranczyk, M.; Smit, B. Accurate Characterization of the Pore Volume in Microporous Crystalline Materials. Langmuir, 2017, 33 (51), pp 14529-14538.", 
        "doi": "10.1021/acs.langmuir.7b01682", 
        "url": "https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b01682"
      }
    ], 
    "id": "9", 
    "contributors": [
      {
        "familyname": "Ongari", 
        "affiliations": [
          "Laboratory of Molecular Simulation, Institut des Sciences et Inge\u0301nierie Chimiques, Valais, Ecole Polytechnique Fe\u0301de\u0301rale de Lausanne (EPFL), Rue de l\u2019Industrie 17, CH-1951 Sion, Switzerland"
        ], 
        "givennames": "Daniele"
      }, 
      {
        "familyname": "Boyd", 
        "affiliations": [
          "Laboratory of Molecular Simulation, Institut des Sciences et Inge\u0301nierie Chimiques, Valais, Ecole Polytechnique Fe\u0301de\u0301rale de Lausanne (EPFL), Rue de l\u2019Industrie 17, CH-1951 Sion, Switzerland"
        ], 
        "givennames": "Peter G."
      }, 
      {
        "familyname": "Barthel", 
        "affiliations": [
          "Laboratory of Molecular Simulation, Institut des Sciences et Inge\u0301nierie Chimiques, Valais, Ecole Polytechnique Fe\u0301de\u0301rale de Lausanne (EPFL), Rue de l\u2019Industrie 17, CH-1951 Sion, Switzerland"
        ], 
        "givennames": "Senja"
      }, 
      {
        "familyname": "Witman", 
        "affiliations": [
          "Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States"
        ], 
        "givennames": "Matthew"
      }, 
      {
        "familyname": "Haranczyk", 
        "affiliations": [
          "Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States", 
          "IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid, Spain"
        ], 
        "givennames": "Maciej"
      }, 
      {
        "email": "berend.smit@epfl.ch", 
        "familyname": "Smit", 
        "affiliations": [
          "Laboratory of Molecular Simulation, Institut des Sciences et Inge\u0301nierie Chimiques, Valais, Ecole Polytechnique Fe\u0301de\u0301rale de Lausanne (EPFL), Rue de l\u2019Industrie 17, CH-1951 Sion, Switzerland"
        ], 
        "givennames": "Berend"
      }
    ], 
    "_files": [
      {
        "key": "pore_volume_SI.tar.gz", 
        "description": "Screening data for the geometric, helium and accessible probe occupiable void fraction for 5109 MOFs. Crystal structures of an example 3D framework of a microporous material. Reticular model used for the geometrical vs helium void fraction comparison.", 
        "size": 987752, 
        "checksum": "md5:ba22e31798c7f1877aa948eb41e2d55e"
      }
    ], 
    "edited_by": 98, 
    "license_addendum": null, 
    "status": "published", 
    "license": "Creative Commons Attribution 4.0 International", 
    "version": 1, 
    "title": "Accurate Characterization of the Pore Volume in Microporous Crystalline Materials (Data Download)", 
    "doi": "10.24435/materialscloud:2017.0005/v1", 
    "description": "Project Abstract: Pore volume is one of the main properties for the characterization of microporous crystals. It is experimentally measurable and it can also be obtained from the refined unit cell by a number of computational techniques. In this work we assess the accuracy and the discrepancies between the different computational methods which are commonly used for this purpose, i.e, geometric, helium and probe center pore volume, by studying a database of more than 5000 frameworks. We developed a new technique to fully characterize the internal void of a microporous material and to compute the probe accessible and occupiable pore volume. We show that unlike the other definitions of pore volume, the occupiable pore volume can be directly related to the experimentally measured pore volumes from nitrogen isotherms.", 
    "_oai": {
      "id": "oai:materialscloud.org:9"
    }, 
    "mcid": "2017.0005/v1", 
    "conceptrecid": "8", 
    "keywords": [
      "Nanoporous materials", 
      "Pore volume", 
      "Void fraction", 
      "MARVEL"
    ], 
    "publication_date": "May 18, 2017, 00:00:00"
  }, 
  "updated": "2017-05-18T00:00:00+00:00", 
  "id": "9"
}