Hidden spontaneous polarisation in the chalcohalide photovoltaic Sn2SbS2I3


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Kavanagh, Seán R.</dc:creator>
  <dc:creator>Savory, Christopher N.</dc:creator>
  <dc:creator>Scanlon, David O.</dc:creator>
  <dc:creator>Walsh, Aron</dc:creator>
  <dc:date>2021-08-11</dc:date>
  <dc:description>Enormous research efforts are currently devoted to the discovery of ‘perovskite-inspired materials’, aiming to replicate the astonishing optoelectronic performance of lead-halide perovskites (LHPs). Recently, chalco halides of group IV/V elements have attracted attention due to the stability provided by stronger metal-chalcogen bonds, alongside compositional flexibility and ns2 cations — a performance-defining feature of LHPs. Following the experimental report of stable, solution-grown tin-antimony sulfoiodide (Sn2SbS2I3) solar cells, with power conversion efficiencies above 4%, we comprehensively characterise the structural and electronic properties of this emerging material. We find that the experimentally-reported centrosymmetric Cmcm crystal structure represents an average over multiple polar Cmc2_1 configurations. This dynamic crystal structure and ferroelectric behaviour could benefit photovoltaic performance. Using state-of-the-art ab initio methods, we assess the efficiency limits of this material, finding maximal solar-conversion efficiencies η_max &gt; 30 % with film thicknesses t &gt; 0.5μm, at the radiative limit.

Open-access Materials Horizons paper: https://doi.org/10.1039/D1MH00764E
Talks on this and other works at: https://www.youtube.com/channel/UCoVGnBeZeWmKzv8_-PzCKCw</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2021.133</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:ge-qt</dc:identifier>
  <dc:identifier>mcid:2021.133</dc:identifier>
  <dc:identifier>oai:materialscloud.org:919</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:relation>https://www.materialscloud.org/explore/tin-antimony-sulfoiodide</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Sn2SbS2I3</dc:subject>
  <dc:subject>Ferroelectric</dc:subject>
  <dc:subject>Polarisation</dc:subject>
  <dc:subject>Chalcohalide</dc:subject>
  <dc:subject>Symmetry-Breaking</dc:subject>
  <dc:subject>Perovskite-Inspired</dc:subject>
  <dc:subject>Lone Pair</dc:subject>
  <dc:subject>Lone-Pair</dc:subject>
  <dc:subject>Defect Tolerance</dc:subject>
  <dc:subject>Photovoltaic</dc:subject>
  <dc:subject>density-functional theory</dc:subject>
  <dc:subject>VASP</dc:subject>
  <dc:subject>Thin Film Photovoltaic</dc:subject>
  <dc:subject>Earth-abundant</dc:subject>
  <dc:subject>ERC</dc:subject>
  <dc:subject>EPSRC</dc:subject>
  <dc:title>Hidden spontaneous polarisation in the chalcohalide photovoltaic Sn2SbS2I3</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>