--------------------------------------------------------------------------------
HDF5 file structure (for each solid included):

Groups are organized by unit cell volume (volume per atom, as a string). A sample H5Py reader is included to demonstrate how the group keys can be found

  Group attributes include:
      + 'V_uc' unit cell volume in Angstrom^3
      + 'E_fermi' Fermi energy in eV
      + 'gap' gap from DOS in eV. For spin polarized calculations (the AFM NiO files), use 'gap up' and 'gap down' instead
      + 'cfr frac' the fractional number of points in the unit cell which are classically forbidden (E_fermi < v_KS). As with 'gap', for spin-polarized calculations, 'cfr frac up' and 'cfr frac down' are used instead
      + 'E conv' converged total energy. Included for the Al crystalline phases (fcc, bcc, sc, and ds) and the AFM NiO states
      + 'units', to ensure the user that all quantities use eV and Angstrom (e.g., Angstrom^3 for volume, PAW core radii are given in Angstrom).

  Within each group are 6 datasets. Each dataset with more than one column/dimension includes a 'header' attribute.

    + 'KS potential': the KS potential (in eV) stored on a real-space (Cartesian) grid, with an indicator to show if that point lies within the PAW core region
      - 'header': 'x, y, z, KS potential, PAW Core? (0=no, 1=yes)'
        or x, y, z, KS potential up, KS potential down, PAW Core? (0=no, 1=yes)' for spin polarized

    + 'lattice vectors': direct lattice vectors in Cartesian coordinates
      - 'header': 'x,y,z'

    + 'basis vectors': the ion positions
      - 'header': 'x,y,z'

    + 'ions': a list of the ions corresponding to the basis positions

    + 'paw core radii': a list of the PAW core radii corresponding to each element of the 'ions' list

    + 'DOS': the intensive density of states (DOS/unit cell volume)
      - 'header': 'E - E_fermi, DOS 1/(eV*angstrom**3)'
      or 'E - E_fermi, DOS up 1/(eV*angstrom**3), DOS down' for spin-polarized

From the code repository, https://gitlab.com/dhamil/vasp-utilities
the HDF5 files are generated using the -hdf5 flag in main.py

--------------------------------------------------------------------------------

List of flags used to analyze/record the files stored here. main.py is the primary executable on the repository.

  Equilibrium data:
    spin-unpolarized: main.py -pot -full -hdf5
    spin-polarized: main.py -pot -full -hdf5 -spin

  Strain data:
    spin-unpolarized: main.py -pot -multi -ncore 4 -hdf5
    spin-polarized: main.py -pot -multi -ncore 4 -hdf5 -spin -ens
    crystalline phase transitions: main.py -pot -multi -ncore 4 -hdf5 -ens

  The -ncore N flag uses N cores to divide up the list of files to analyze;
  it can be omitted

--------------------------------------------------------------------------------
Solids in each zipped archive:

1) PBE_VASP_equilibrum.tar.gz:

  NB: PBE in VASP

  Al, PBE_Al_equilibrium_ks_pot.hdf5

  C, PBE_C_equilibrium_ks_pot.hdf5

  graphite, PBE_C_hex_equilibrium_ks_pot.hdf5 and PBE_C_hex_expt_latt_const_ks_pot.hdf5

  graphene, PBE_graphene_equilibrium_ks_pot.hdf5

  Cu, PBE_Cu_equilibrium_ks_pot.hdf5

  MoS2 bulk, PBE_MoS2_equilibrium_ks_pot.hdf5

  MoS2 monolayer, PBE_MoS2_monolayer_equilibrium_ks_pot.hdf5

  NaCl, PBE_NaCl_equilibrium_ks_pot.hdf5 and PBE_NaCl_expt_latt_const_ks_pot.hdf5

  Ne, PBE_Ne_equilibrium_ks_pot.hdf5 and PBE_Ne_expt_latt_const_ks_pot.hdf5

  NiO
    spin unpolarized, PBE_NiO_equilibrium_ks_pot.hdf5
    antiferromagnetic rocksalt, PBE_NiO_AFM_rs_equilibrium_ks_pot.hdf5
    antiferromagnetic zincblende, PBE_NiO_AFM_zb_equilibrium_ks_pot.hdf5

  Pt, PBE_Pt_equilibrium_ks_pot.hdf5

  Monovacancy defect in Pt
    relaxing both volume and ion positions, PBE_Pt_monovacancy_equilibrium_ks_pot.hdf5
    Relaxing ion positions only, PBE_Pt_monovacancy_fixed_volume_equilibrium_ks_pot.hdf5

  Si, PBE_Si_equilibrium_ks_pot.hdf5

2) PBE_VASP_strains.tar.gz

  NB: PBE in VASP

  Al, PBE_Al_ks_pot.hdf5

  C, PBE_C_ks_pot.hdf5

  Cu, PBE_Cu_ks_pot.hdf5

  Ge, PBE_Ge_ks_pot.hdf5

  NaCl, PBE_NaCl_ks_pot.hdf5

  Ne, PBE_Ne_ks_pot.hdf5

  NiO
    Spin unpolarized, PBE_NiO_UP_ks_pot.hdf5
    antiferromagnetic rocksalt, PBE_NiO_AFM_rs_ks_pot.hdf5
    antiferromagnetic zincblende, PBE_NiO_AFM_zb_ks_pot.hdf5

  Pt, PBE_Pt_ks_pot.hdf5

  Si, PBE_Si_ks_pot.hdf5

  Crystalline phases of Al
    bcc, PBE_Al_bcc_ks_pot.hdf5
    diamond cubic, PBE_Al_bcc_ks_pot.hdf5
    fcc, PBE_Al_fcc_ks_pot.hdf5
    simple cubic, PBE_Al_sc_ks_pot.hdf5

  Some testing files that increase number of points in density of states (NEDOS)
    PBE_Ge_nedos_2000_ks_pot.hdf5
    PBE_Ge_nedos_3000_ks_pot.hdf5
    PBE_Si_nedos_3000_ks_pot.hdf5
    * NB these were referred to in the paper as a test of our methods, but we didn't present results from these

3) PBE_Castep_strains.tar

  NB: PBE in Castep, only analyzed outputs
  Al, Ar, Ba, Be, C, Ca, Cs, Cu, Ge, He, K, Kr, Li, Mg, Na, NaCl, Ne, Pb, Pt, Ra, Rb, Rn,
  Si, Sn, Sr, Xe

4) LSDA_VASP_equilibrum.tar.gz:

  NB: LSDA in VASP

  Al, PBE_Al_equilibrium_ks_pot.hdf5

  C, LSDA_C_equilibrium_ks_pot.hdf5

  graphite, LSDA_C_hex_equilibrium_ks_pot.hdf5 and LSDA_C_hex_expt_latt_const_ks_pot.hdf5

  graphene, LSDA_graphene_equilibrium_ks_pot.hdf5

  Cu, LSDA_Cu_equilibrium_ks_pot.hdf5

  MoS2 bulk, LSDA_MoS2_equilibrium_ks_pot.hdf5

  MoS2 monolayer, LSDA_MoS2_monolayer_equilibrium_ks_pot.hdf5

  NaCl, LSDA_NaCl_equilibrium_ks_pot.hdf5 and LSDA_NaCl_expt_latt_const_ks_pot.hdf5

  Ne, LSDA_Ne_equilibrium_ks_pot.hdf5 and LSDA_Ne_expt_latt_const_ks_pot.hdf5

  Pt, LSDA_Pt_equilibrium_ks_pot.hdf5

  Monovacancy defect in Pt
    relaxing both volume and ion positions, LSDA_Pt_monovacancy_equilibrium_ks_pot.hdf5
    Relaxing ion positions only, LSDA_Pt_monovacancy_fixed_volume_equilibrium_ks_pot.hdf5

5) LSDA_VASP_strains.tar.gz

  NB: LSDA in VASP

  Al, LSDA_Al_ks_pot.hdf5

  C, LSDA_C_ks_pot.hdf5

  Cu, LSDA_Cu_ks_pot.hdf5

  Ge, LSDA_Ge_ks_pot.hdf5

  NaCl, LSDA_NaCl_ks_pot.hdf5

  Ne, LSDA_Ne_ks_pot.hdf5

  Pt, LSDA_Pt_equilibrium_ks_pot.hdf5

  Si, LSDA_Si_equilibrium_ks_pot.hdf5