Publication date: Apr 02, 2025
This database contains the reference data used for direct force training of Artificial Neural Network (ANN) interatomic potentials using the atomic energy network (ænet) and ænet-PyTorch packages (https://github.com/atomisticnet/aenet-PyTorch). It also includes the GPR-augmented data used for indirect force training via Gaussian Process Regression (GPR) surrogate models using the ænet-GPR package (https://github.com/atomisticnet/aenet-gpr). Each data file contains atomic structures, energies, and atomic forces in XCrySDen Structure Format (XSF). The dataset includes all reference training/test data and corresponding GPR-augmented data used in the four benchmark examples presented in the reference paper, “Scalable Training of Neural Network Potentials for Complex Interfaces Through Data Augmentation”. A hierarchy of the dataset is described in the README.txt file, and an overview of the dataset is also summarized in supplementary Table S1 of the reference paper.
No Explore or Discover sections associated with this archive record.
File name | Size | Description |
---|---|---|
README.txt
MD5md5:02fd7bde8f16958144845121ba163d86
|
14.7 MiB | Description of the dataset |
1_H2_xsf.tar.bz2
MD5md5:0aa065a05906aabb4a8d5c1fd992e50a
|
12.4 KiB | ANN training data in XSF format used for H₂ molecule example (Total number: 403) |
2_EC-EC_xsf.tar.bz2
MD5md5:12c48fdeabada0f3483e296397c811ba
|
152.8 MiB | ANN training data in XSF format used for EC dimer example (Total number: 181,000) |
3_Li-EC-surface_xsf.tar.bz2
MD5md5:6a1ce0f80ef1bf7899eb2a831656d8b4
|
128.3 MiB | ANN training data in XSF format used for EC on Li surface example (Total number: 68,000) |
4_Li-EC-interfaces_xsf.tar.bz2
MD5md5:05f3542df4fa980c62dad03f01456a23
|
147.9 MiB | ANN training data in XSF format used for Li-EC interface example (Total number: 80,768) |
2025.51 (version v1) [This version] | Apr 02, 2025 | DOI10.24435/materialscloud:w6-9a |