Energetics of the coupled electronic–structural transition in the rare-earth nickelates


JSON Export

{
  "revision": 1, 
  "id": "104", 
  "created": "2020-05-12T13:52:35.168408+00:00", 
  "metadata": {
    "doi": "10.24435/materialscloud:2019.0009/v1", 
    "status": "published", 
    "title": "Energetics of the coupled electronic\u2013structural transition in the rare-earth nickelates", 
    "mcid": "2019.0009/v1", 
    "license_addendum": "", 
    "_files": [
      {
        "description": "The README contains information on the notebooks and data stored in the archive", 
        "key": "README.txt", 
        "size": 3165, 
        "checksum": "md5:02aeb0bc9d04ae30320af3f3e143492d"
      }, 
      {
        "description": "The compressed file contains the jupyter notebooks,and subfolders with the data used by the notebooks to produce the plots found in the publication, and to reproduce the data found in our publication", 
        "key": "npj_QM_data_notebooks.tgz", 
        "size": 4658142812, 
        "checksum": "md5:9a65470210a1351eb432118c3221f112"
      }
    ], 
    "owner": 88, 
    "_oai": {
      "id": "oai:materialscloud.org:104"
    }, 
    "keywords": [
      "MARVEL", 
      "Electronic properties and materials", 
      "Quantum Materials", 
      "Dynamical Mean Field Theory", 
      "correlated systems structural prediction "
    ], 
    "conceptrecid": "103", 
    "is_last": true, 
    "references": [
      {
        "type": "Journal reference", 
        "doi": "10.1038/s41535-019-0145-4", 
        "url": "https://doi.org/10.1038/s41535-019-0145-4", 
        "comment": "Paper where the data and plots are discussed", 
        "citation": "A. Hampel, P. Liu, C. Franchini,  and C. Ederer, npj Quantum Materials 4, 5 (2019)"
      }
    ], 
    "publication_date": "Feb 21, 2019, 00:00:00", 
    "license": "Creative Commons Attribution 4.0 International", 
    "id": "104", 
    "description": "Rare-earth nickelates exhibit a metal\u2013insulator transition accompanied by a structural distortion that breaks the symmetry between formerly equivalent Ni sites. The quantitative theoretical description of this coupled electronic\u2013structural instability is extremely challenging. Here, we address this issue by simultaneously taking into account both structural and electronic degrees of freedom using a charge self-consistent combination of density functional theory and dynamical mean-field theory, together with screened interaction parameters obtained from the constrained random phase approximation. Our total energy calculations show that the coupling to an electronic instability toward a charge disproportionated insulating state is crucial to stabilize the structural distortion, leading to a clear first order character of the coupled transition. The decreasing octahedral rotations across the series suppress this electronic instability and simultaneously increase the screening of the effective Coulomb interaction, thus weakening the correlation effects responsible for the metal\u2013insulator transition. Our approach allows to obtain accurate values for the structural distortion and thus facilitates a comprehensive understanding, both qualitatively and quantitatively, of the complex interplay between structural properties and electronic correlation effects across the nickelate series.", 
    "version": 1, 
    "contributors": [
      {
        "email": "alexander.hampel@mat.ethz.ch", 
        "affiliations": [
          "Materials Theory, ETH Z\u00fcrich, Wolfgang-Pauli-Strasse 27, 8093, Z\u00fcrich, Switzerland"
        ], 
        "familyname": "Hampel", 
        "givennames": "Alexander"
      }, 
      {
        "email": "claude.ederer@mat.ethz.ch", 
        "affiliations": [
          "Materials Theory, ETH Z\u00fcrich, Wolfgang-Pauli-Strasse 27, 8093, Z\u00fcrich, Switzerland"
        ], 
        "familyname": "Ederer", 
        "givennames": "Claude"
      }, 
      {
        "affiliations": [
          "Faculty of Physics, Computational Materials Physics, University of Vienna, Vienna, A-1090, Austria"
        ], 
        "familyname": "Liu", 
        "givennames": "Peitao"
      }, 
      {
        "affiliations": [
          "Faculty of Physics, Computational Materials Physics, University of Vienna, Vienna, A-1090, Austria & Dipartimento di Fisica e Astronomia, Universit\u00e0 di Bologna, 40127, Bologna, Italy"
        ], 
        "familyname": "Franchini", 
        "givennames": "Cesare"
      }
    ], 
    "edited_by": 98
  }, 
  "updated": "2019-02-21T00:00:00+00:00"
}