Multithermal-multibaric molecular simulations from a variational principle


JSON Export

{
  "metadata": {
    "is_last": true, 
    "publication_date": "Jun 12, 2019, 00:00:00", 
    "edited_by": 98, 
    "version": 3, 
    "license": "Creative Commons Attribution 4.0 International", 
    "license_addendum": "", 
    "_files": [
      {
        "checksum": "md5:767526ab711d6ef20ca7f30808c6022e", 
        "key": "Sodium.zip", 
        "size": 10297794, 
        "description": "A simulation of liquid Na in the multicanonical ensemble.  References computed in the canonical ensemble at different temperatures. A Jupyter Notebook with the code used to generate the results shown in the paper."
      }, 
      {
        "checksum": "md5:e7b1b347ae1abac65422fef9e4a00cb5", 
        "key": "Water.zip", 
        "size": 2846676875, 
        "description": "A simulation of liquid TIP4P/Ice water in the multithermal-multibaric ensemble.  References computed in the isothermal-isobaric ensemble. A Jupyter Notebook with the code used to generate the results shown in the paper.\r\n"
      }, 
      {
        "checksum": "md5:7aaad7828f6eb1a85e5712b22a586de6", 
        "key": "README.txt", 
        "size": 1330, 
        "description": "README file with description of the other files"
      }, 
      {
        "checksum": "md5:7e3793650001014456b54797f4545592", 
        "key": "WaterPlumedInputs.zip", 
        "size": 44594, 
        "description": "Plumed input files for the simulation of liquid TIP4P/Ice water  in the multithermal-multibaric ensemble.  "
      }
    ], 
    "mcid": "2019.0016/v3", 
    "keywords": [
      "enhanced sampling", 
      "multithermal-multibaric", 
      " water", 
      "density anomaly", 
      "Wang Landau", 
      "multicanonical"
    ], 
    "contributors": [
      {
        "givennames": "Pablo M.", 
        "email": "pablo.piaggi@phys.chem.ethz.ch", 
        "familyname": "Piaggi", 
        "affiliations": [
          "Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland; Facolt\u00e0 di Informatica, Istituto di Scienze Computazionali, and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Universit\u00e0 della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland"
        ]
      }, 
      {
        "givennames": "Michele", 
        "email": "parrinello@phys.chem.ethz.ch", 
        "familyname": "Parrinello", 
        "affiliations": [
          "Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland; Facolt\u00e0 di Informatica, Istituto di Scienze Computazionali, and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Universit\u00e0 della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Switzerland"
        ]
      }
    ], 
    "status": "published", 
    "doi": "10.24435/materialscloud:2019.0016/v3", 
    "title": "Multithermal-multibaric molecular simulations from a variational principle", 
    "id": "121", 
    "description": "We present a method for performing multithermal-multibaric molecular dynamics simulations that sample entire regions of the temperature-pressure (TP) phase diagram. The method uses a variational principle [Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)] in order to construct a bias that leads to a uniform sampling in energy and volume. The intervals of temperature and pressure are taken as inputs and the relevant energy and volume regions are determined on the fly. In this way the method guarantees adequate statistics for the chosen TP region. We show that our multithermal-multibaric simulations can be used to calculate all static physical quantities for all temperatures and pressures in the targeted region of the TP plane. We illustrate our approach by studying the density anomaly of TIP4P/Ice water.\r\n\r\nThis record includes input and output files, and Jupyter Notebooks describing the analysis of the simulations and the creation of the figures for the paper.", 
    "owner": 43, 
    "_oai": {
      "id": "oai:materialscloud.org:121"
    }, 
    "conceptrecid": "118", 
    "references": [
      {
        "doi": "10.1103/PhysRevLett.122.050601", 
        "url": "https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.050601", 
        "comment": "Paper", 
        "citation": "P. M. Piaggi, M. Parrinello, Phys. Rev. Lett. 122, 050601 (2019)", 
        "type": "Journal reference"
      }, 
      {
        "doi": "", 
        "url": "https://arxiv.org/abs/1811.08253", 
        "comment": "Preprint", 
        "citation": "P. M. Piaggi, M. Parrinello, arXiv preprint, arXiv:1811.08253 (2019)", 
        "type": "Preprint"
      }, 
      {
        "doi": "10.1016/j.cpc.2013.09.018", 
        "url": "https://www.plumed.org/doc-master/user-doc/html/_t_d__m_u_l_t_i_t_h_e_r_m_a_l__m_u_l_t_i_b_a_r_i_c.html", 
        "comment": "Open source implementation of the method available in the official PLUMED website", 
        "citation": "G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, Computer Physics Communications 185, 604-613 (2014)", 
        "type": "Software"
      }
    ]
  }, 
  "updated": "2019-06-12T00:00:00+00:00", 
  "revision": 1, 
  "id": "121", 
  "created": "2020-05-12T13:52:43.947184+00:00"
}