Dataset for fracture and impact toughness of high-entropy alloys


JSON Export

{
  "metadata": {
    "is_last": true, 
    "version": 3, 
    "title": "Dataset for fracture and impact toughness of high-entropy alloys", 
    "keywords": [
      "High-entropy Alloys", 
      "Fracture Toughness", 
      "Impact Toughness", 
      "Impact Energy"
    ], 
    "description": "Fracture dictates the service limits of metallic structures. Damage tolerance of materials may be characterized by fracture toughness rigorously developed from fracture mechanics, or less rigorous yet more easily obtained impact toughness (or impact energy as a variant). Given the promise of high-entropy alloys (HEAs) in structural and damage-tolerance applications, we compiled a dataset of fracture toughness and impact toughness/energy from the literature till mid-2022. The dataset is subdivided into three categories, i.e., fracture toughness, impact toughness, and impact energy, which contain 148, 14, and 78 distinct data records, respectively. On top of the alloy chemistry and measured fracture quantities, each data record also records the factors influential to fracture. Examples are material processing history, phase structure, grain size, uniaxial tensile properties such as yield strength and elongation, and testing conditions.", 
    "license": "Creative Commons Attribution 4.0 International", 
    "references": [
      {
        "type": "Journal reference", 
        "citation": "Zhang, H., He, Y. & Pan, Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scr. Mater. 69, 342-345 (2013)", 
        "doi": "10.1016/j.scriptamat.2013.05.020"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Roy, U., Roy, H., Daoud, H., Glatzel, U. & Ray, K. K. Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system. Mater. Lett. 132, 186-189 (2014)", 
        "doi": "10.1016/j.matlet.2014.06.067"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P. & Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153-1158 (2014)", 
        "doi": "10.1126/science.1254581"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Seifi, M., Li, D., Yong, Z., Liaw, P. K. & Lewandowski, J. J. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. Jom 67, 2288-2295 (2015)", 
        "doi": "10.1007/s11837-015-1563-9"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Chen, C., Pang, S., Cheng, Y. & Zhang, T. Microstructure and mechanical properties of Al20\u2212xCr20+0.5xFe20Co20Ni20+0.5x high entropy alloys. J. Alloys Compd. 659, 279-287 (2016)", 
        "doi": "10.1016/j.jallcom.2015.10.258"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Gludovatz, B., Hohenwarter, A., Thurston, K. V., Bei, H., Wu, Z., George, E. P. & Ritchie, R. O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016)", 
        "doi": "10.1038/ncomms10602"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Zhang, A., Han, J., Meng, J., Su, B. & Li, P. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 181, 82-85 (2016)", 
        "doi": "10.1016/j.matlet.2016.06.014"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Zou, Y., Okle, P., Yu, H., Sumigawa, T., Kitamura, T., Maiti, S., Steurer, W. & Spolenak, R. Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scr. Mater. 128, 95-99 (2017)", 
        "doi": "10.1016/j.scriptamat.2016.09.036"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Zhang, A., Han, J., Su, B., Li, P. & Meng, J. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite. Mater. Design 114, 253-263 (2017)", 
        "doi": "10.1016/j.matdes.2016.11.072"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Mohanty, S., Maity, T. N., Mukhopadhyay, S., Sarkar, S., Gurao, N. P., Bhowmick, S. & Biswas, K. Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng.: A 679, 299-313 (2017)", 
        "doi": "10.1016/j.msea.2016.09.062"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Luo, W., Liu, Y., Luo, Y. & Wu, M. Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering. J. Alloys Compd. 754, 163-170 (2018)", 
        "doi": "10.1016/j.jallcom.2018.04.270"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Yadav, S., Sarkar, S., Aggarwal, A., Kumar, A. & Biswas, K. Wear and mechanical properties of novel (CuCrFeTiZn)100-xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410-411, 93-109 (2018)", 
        "doi": "10.1016/j.wear.2018.05.023"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Zhang, A., Han, J., Su, B. & Meng, J. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater. Sci. Eng.: A 731, 36-43 (2018)", 
        "doi": "10.1016/j.msea.2018.06.030"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Wang, S.-P., Ma, E. & Xu, J. Notch fracture toughness of body-centered-cubic (TiZrNbTa) Mo high-entropy alloys. Intermetallics 103, 78-87 (2018)", 
        "doi": "10.1016/j.intermet.2018.10.008"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Chen, L., Bobzin, K., Zhou, Z., Zhao, L., \u00d6te, M., K\u00f6nigstein, T., Tan, Z. & He, D. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf. Coat. Technol. 358, 215-222 (2019)", 
        "doi": "10.1016/j.surfcoat.2018.11.052"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Jo, Y. H., Choi, W. M., Kim, D. G., Zargaran, A., Lee, K., Sung, H., Sohn, S. S., Kim, H. S., Lee, B. J. & Lee, S. Utilization of brittle \u03c3 phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy. Mater. Sci. Eng.: A 743, 665-674 (2019)", 
        "doi": "10.1016/j.msea.2018.11.136"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Chung, D., Ding, Z. & Yang, Y. Hierarchical Eutectic Structure Enabling Superior Fracture Toughness and Superb Strength in CoCrFeNiNb0.5 Eutectic High Entropy Alloy at Room Temperature. Adv. Eng. Mater. 21 (2018)", 
        "doi": "10.1002/adem.201801060"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Xiao, Y., Zou, Y., Ma, H., Sologubenko, A. S., Maeder, X., Spolenak, R. & Wheeler, J. M. Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness. Scr. Mater. 168, 51-55 (2019)", 
        "doi": "10.1016/j.scriptamat.2019.04.011"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Jo, Y. H., Doh, K.-Y., Kim, D. G., Lee, K., Kim, D. W., Sung, H., Sohn, S. S., Lee, D., Kim, H. S., Lee, B.-J. & Lee, S. Cryogenic-temperature fracture toughness analysis of non-equi-atomic V10Cr10Fe45Co20Ni15 high-entropy alloy. J. Alloys Compd. 809 (2019)", 
        "doi": "10.1016/j.jallcom.2019.151864"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Nair, R. B., Arora, H. S., Boyana, A. V., Saiteja, P. & Grewal, H. S. Tribological behavior of microwave synthesized high entropy alloy claddings. Wear 436-437 (2019)", 
        "doi": "10.1016/j.wear.2019.203028"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Wang, Z., Xiong, J., Guo, Z., Yang, T., Liu, J. & Chai, B. The microstructure and properties of novel Ti(C,N)-based cermets with multi-component CoCrFeNiCu high-entropy alloy binders. Mater. Sci. Eng.: A 766 (2019)", 
        "doi": "10.1016/j.msea.2019.138345"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Fang, Y., Chen, N., Du, G., Zhang, M., Zhao, X., Cheng, H. & Wu, J. High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder. J. Alloys Compd. 815 (2020)", 
        "doi": "10.1016/j.jallcom.2019.152486"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Li, N., Wu, S., Ouyang, D., Zhang, J. & Liu, L. Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting. J. Alloys Compd. 822 (2020)", 
        "doi": "10.1016/j.jallcom.2020.153695"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Ganji, R. S., Rajulapati, K. V. & Rao, K. Development of a multi-phase AlCuTaVW high-entropy alloy using powder metallurgy route and its mechanical properties. Trans. Indian Inst. Met. 73, 613-618 (2020)", 
        "doi": "10.1007/s12666-020-01875-2"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Xin, B., Zhang, A., Han, J., Su, B. & Meng, J. Tuning composition and microstructure by doping Ti and C for enhancing mechanical property and wear resistance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy matrix composites. J. Alloys Compd. 836 (2020)", 
        "doi": "10.1016/j.jallcom.2020.155273"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Guo, Z., Zhang, A., Han, J. & Meng, J. Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2. Tribology International 151 (2020)", 
        "doi": "10.1016/j.triboint.2020.106436"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Jo, Y. H., Yang, J., Doh, K.-Y., An, W., Kim, D. W., Sung, H., Lee, D., Kim, H. S., Sohn, S. S. & Lee, S. Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures. J. Alloys Compd. 844 (2020)", 
        "doi": "10.1016/j.jallcom.2020.156090"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Long, Y., Che, J., Wu, Z., Lin, H.-T. & Zhang, F. High entropy alloy borides prepared by powder metallurgy process and the enhanced fracture toughness by addition of yttrium. Mater. Chem. Phys. 257 (2021)", 
        "doi": "10.1016/j.matchemphys.2020.123715"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Gou, Q., Xiong, J., Guo, Z., Liu, J., Yang, L. & Li, X. Influence of NbC additions on microstructure and wear resistance of Ti(C,N)-based cermets bonded by CoCrFeNi high-entropy alloy. International Journal of Refractory Metals and Hard Materials 94 (2021)", 
        "doi": "10.1016/j.ijrmhm.2020.105375"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Erdogan, A., G\u00fcnen, A., G\u00f6k, M. S. & Zeytin, S. Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy. Vacuum 183 (2021)", 
        "doi": "10.1016/j.vacuum.2020.109820"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Scales, R. J., Armstrong, D. E. J., Wilkinson, A. J. & Li, B. S. On the brittle-to-ductile transition of the as-cast TiVNbTa refractory high-entropy alloy. Materialia 14 (2020)", 
        "doi": "10.1016/j.mtla.2020.100940"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Salemi, F., Karimzadeh, F. & Abbasi, M. H. Evaluation of Thermal and Mechanical Behavior of CuNiCoZnAl High-Entropy Alloy Fabricated Using Mechanical Alloying and Spark Plasma Sintering. Met. Mat. Trans. A 52, 1947-1962 (2021)", 
        "doi": "10.1007/s11661-021-06205-9"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Dada, M., Popoola, P., Mathe, N., Adeosun, S. & Pityana, S. Investigating the elastic modulus and hardness properties of a high entropy alloy coating using nanoindentation. International Journal of Lightweight Materials and Manufacture 4, 339-345 (2021)", 
        "doi": "10.1016/j.ijlmm.2021.04.002"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Liu, Q., Dong, T.-s., Fu, B.-g., Li, G.-l. & Yang, L.-j. Effect of Laser Remelting on Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy Coating. J. Mater. Eng. Perform. 30, 5728-5735 (2021)", 
        "doi": "10.1007/s11665-021-05806-0"
      }, 
      {
        "type": "Journal reference", 
        "citation": "G\u00fcnen, A. Tribocorrosion behavior of boronized Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high entropy alloy. Surf. Coat. Technol. 421 (2021)", 
        "doi": "10.1016/j.surfcoat.2021.127426"
      }, 
      {
        "citation": "G\u00f3rniewicz1a, D., J\u00f3\u017awiak, S., Przygucki, H. & Kopec, M. The concept of improving the fracture toughness of double-phase high entropy alloy produced by high-pulse sintering method U-FAST. 15th International Conference on Advances in Experimental Mechanics (2021)", 
        "type": "Journal reference"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Solodkyi, I., Teslia, S., Bezdorozhev, O., Trosnikova, I., Yurkova, O., Bogomol, I. & Loboda, P. Hardmetals prepared from WC-W2C eutectic particles and AlCrFeCoNiV high entropy alloy as a binder. Vacuum 195 (2022)", 
        "doi": "10.1016/j.vacuum.2021.110630"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Xin, B., Zhang, A., Han, J., Zhang, J. & Meng, J. Enhancing mechanical properties of the boron doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy via tuning composition and microstructure. J. Alloys Compd. 896 (2022)", 
        "doi": "10.1016/j.jallcom.2021.162852"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Yang, J., Jo, Y. H., An, W., Kim, H. S., Lee, B.-J., Lee, S., Sung, H. & Sohn, S. S. Effects of deformation-induced martensitic transformation on cryogenic fracture toughness for metastable Si8V2Fe45Cr10Mn5Co30 high-entropy alloy. Acta Mater. 225 (2022)", 
        "doi": "10.1016/j.actamat.2021.117568"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Jiang, H., Ni, Z., Wang, J., Li, L., Huang, T., Han, K., Zhang, Q. & Sui, H. Design multi\u2010component eutectic alloys in the Co\u2010Cr\u2010Fe\u2010Ni\u2010Nb system using simple mixing method. Adv. Eng. Mater. 24, 202101339 (2022)", 
        "doi": "10.1002/adem.202101339"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Hong, S., Li, J., Zhao, P., Xu, Y. & Li, W. Evolution in Wear and High-Temperature Oxidation Resistance of Laser-Clad AlxMoNbTa Refractory High-Entropy Alloys Coatings with Al Addition Content. Coatings 12 (2022)", 
        "doi": "10.3390/coatings12020121"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Yang, S., Xiong, J., Guo, Z., Wu, B., Yang, T. e., You, Q., Liu, J., Deng, C., Fang, D., Gou, S., Yu, Z. & Chen, S. Effects of CrMnFeCoNi additions on microstructure, mechanical properties and wear resistance of Ti(C,N)-based cermets. Journal of Materials Research and Technology 17, 2480-2494 (2022)", 
        "doi": "10.1016/j.jmrt.2022.02.021"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Fan, X. J., Qu, R. T. & Zhang, Z. F. Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy. Journal of Materials Science & Technology 123, 70-77 (2022)", 
        "doi": "10.1016/j.jmst.2022.01.017"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Wu, Z., Chen, Y., Hai, W. & Liu, M. Effect of AlxCoCrFeNiCu binder on mechanical properties and wear performance of Ti (C, N) cermet. International Journal of Modern Physics B 36, 2240038 (2022)", 
        "doi": "10.1142/S0217979222400380"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Qian, C., Liu, Y., Cheng, H., Li, K., Liu, B. & Zhang, X. Effect of carbon content on microstructure and mechanical properties of cemented carbides with CoNiFeCr high entropy alloy binder. Available at SSRN 4074390 (2022)", 
        "doi": "10.2139/ssrn.4074390"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Long, Y., Zhang, G., Chen, J., Datye, A., Zhang, S., Schwarz, U. D., Lin, H.-T. & Zhang, F. Effect of Yttrium on Mechanical Properties, Phases, and Microstructure of Feconialcrb High Entropy Alloys Prepared by Sps. Available at SSRN 4074390 (2022)", 
        "doi": "10.2139/ssrn.4084629"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Liu, L.-X., Pan, J., Zhang, C., Xu, J.-Y., Guo, R. & Liu, L. Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault. Mater. Sci. Eng.: A 843 (2022)", 
        "doi": "10.1016/j.msea.2022.143106"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Zheng, D. High-Entropy-Alloy CoFeNiCr Bonded WC-Based Cemented Carbide Prepared by Spark Plasma Sintering. Met. Mat. Trans. A 53, 2724-2729 (2022)", 
        "doi": "10.1007/s11661-022-06701-6"
      }, 
      {
        "citation": "Semenyuk, A., Klimova, M., Shaysultanov, D., Chernichenko, R., Zherebtsov, S. & Stepanov, N. Effect of carbon content on cryogenic mechanical properties of CoCrFeMnNi high entropy alloy. IOP Conference Series: Materials Science and Engineering. 012050 (2021)", 
        "type": "Journal reference"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Jiang, W., Gao, X., Cao, Y., Liu, Y., Mao, Q., Gu, L. & Zhao, Y. Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures. Mater. Sci. Eng.: A 837 (2022)", 
        "doi": "10.1016/j.msea.2022.142735"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Li, D. & Zhang, Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24-28 (2016)", 
        "doi": "10.1016/j.intermet.2015.11.002"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Xia, S. Q., Gao, M. C. & Zhang, Y. Abnormal temperature dependence of impact toughness in Al CoCrFeNi system high entropy alloys. Mater. Chem. Phys. 210, 213-221 (2018)", 
        "doi": "10.1016/j.matchemphys.2017.06.021"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Kim, J. H., Lim, K. R., Won, J. W., Na, Y. S. & Kim, H.-S. Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures. Mater. Sci. Eng.: A 712, 108-113 (2018)", 
        "doi": "10.1016/j.msea.2017.11.081"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Bi, G., Chew, Y., Weng, F., Zhu, Z., Ng, F. L. & Lee, B. Y. Process study and characterization of properties of FerCrNiMnCo high-entropy alloys fabricated by laser-aided additive manufacturing. Advanced Laser Processing and Manufacturing II.  43-52 (2018)", 
        "doi": "10.1117/12.2502272"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Jo, Y. H., Kim, D. G., Jo, M. C., Doh, K. Y., Sohn, S. S., Lee, D., Kim, H. S., Lee, B. J. & Lee, S. Effects of deformation\u2013induced BCC martensitic transformation and twinning on impact toughness and dynamic tensile response in metastable VCrFeCoNi high\u2013entropy alloy. J. Alloys Compd. 785, 1056-1067 (2019)", 
        "doi": "10.1016/j.jallcom.2019.01.293"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Yang, M., Zhou, L., Wang, C., Jiang, P., Yuan, F., Ma, E. & Wu, X. High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature. Scr. Mater. 172, 66-71 (2019)", 
        "doi": "10.1016/j.scriptamat.2019.07.010"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Lin, D., Xu, L., Jing, H., Han, Y., Zhao, L. & Minami, F. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting. Add. Manuf. 32 (2020)", 
        "doi": "10.1016/j.addma.2020.101058"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Zhang, L. & Zhang, Y. Tensile Properties and Impact Toughness of AlCoxCrFeNi3.1\u2013x (x = 0.4, 1) High-Entropy Alloys. Frontiers in Materials 7 (2020)", 
        "doi": "10.3389/fmats.2020.00092"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Kim, Y.-K., Kim, M.-C. & Lee, K.-A. 1.45\u00a0GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion. Journal of Materials Science & Technology 97, 10-19 (2022)", 
        "doi": "10.1016/j.jmst.2021.04.030"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Ostovari Moghaddam, A., Pasandideh, J., Abdollahzadeh, A., Shaburova, N. A. & Trofimov, E. On the application of NbTaTiVW refractory high entropy alloy particles in the manufacturing process of WC based matrix body drill bits. International Journal of Refractory Metals and Hard Materials 99 (2021)", 
        "doi": "10.1016/j.ijrmhm.2021.105608"
      }, 
      {
        "type": "Journal reference", 
        "citation": "Liu, D., Yu, Q., Kabra, S., Jiang, M., Forna-Kreutzer, P., Zhang, R., Payne, M., Walsh, F., Gludovatz, B., Asta, M., Minor, A. M., George, E. P. & Ritchie, R. O. Exceptional fracture toughness of CrCoNi-based medium-and high-entropy alloys at 20 kelvin. Science 378, 978-983 (2022).", 
        "doi": "10.1126/science.abp8070"
      }
    ], 
    "doi": "10.24435/materialscloud:d6-pf", 
    "conceptrecid": "1456", 
    "publication_date": "Dec 12, 2022, 15:50:39", 
    "edited_by": 576, 
    "_oai": {
      "id": "oai:materialscloud.org:1579"
    }, 
    "contributors": [
      {
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA"
        ], 
        "email": "xfan5@vols.utk.edu", 
        "familyname": "Fan", 
        "givennames": "Xuesong"
      }, 
      {
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA"
        ], 
        "email": "schen50@vols.utk.edu", 
        "familyname": "Chen", 
        "givennames": "Shiyi"
      }, 
      {
        "affiliations": [
          "Imagars LLC, Hillsboro, OR 97124, USA"
        ], 
        "email": "baldur@imagars.com", 
        "familyname": "Steingrimsson", 
        "givennames": "Baldur"
      }, 
      {
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA"
        ], 
        "email": "lei432378yu@gmail.com", 
        "familyname": "Li", 
        "givennames": "Weidong"
      }, 
      {
        "affiliations": [
          "Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA"
        ], 
        "email": "pliaw@utk.edu", 
        "familyname": "Liaw", 
        "givennames": "Peter K."
      }
    ], 
    "owner": 827, 
    "license_addendum": null, 
    "mcid": "2022.171", 
    "_files": [
      {
        "size": 136728, 
        "checksum": "md5:49752645bd1e9181049399f8702442eb", 
        "description": "A summary of data on fracture toughness, impact toughness, and impact energy for various high-entropy alloys.", 
        "key": "Dataset for Fracture and Impact Toughness of High-Entropy Alloys_v3.xlsx"
      }
    ], 
    "id": "1579", 
    "status": "published"
  }, 
  "revision": 2, 
  "updated": "2022-12-12T14:50:39.100612+00:00", 
  "created": "2022-12-11T22:06:00.808675+00:00", 
  "id": "1579"
}