Phase formation capability and compositional design of β-phase multiple rare-earth principal component disilicates


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Luo, Yixiu</dc:creator>
  <dc:creator>Sun, Luchao</dc:creator>
  <dc:creator>Wang, Jiemin</dc:creator>
  <dc:creator>Du, Tiefeng</dc:creator>
  <dc:creator>Zhou, Cui</dc:creator>
  <dc:creator>Zhang, Jie</dc:creator>
  <dc:creator>Wang, Jingyang</dc:creator>
  <dc:date>2023-01-30</dc:date>
  <dc:description>A key strategy to design environmental barrier coatings focuses on doping multiple rare-earth principal components into β-type rare-earth disilicates (RE2Si2O7) to achieve versatile property optimization. However, controlling the phase formation capability of (nRExi)2Si2O7 remains a crucial challenge, due to the complex polymorphic phase competitions and evolutions led by different RE3+ combination. Herein, by fabricating twenty-one model (REI0.25REII0.25REIII0.25REIV0.25)2Si2O7 compounds, we find that their formation capability can be evaluated by the ability to accommodate configurational randomness of multiple RE3+ cations in β-type lattice while preventing the β-to-γ polymorphic transformation. The phase formation and stabilization are controlled by the average RE3+ radius and the deviations of different RE3+ combinations. Subsequently, based on high-throughput density-functional-theory calculations, we propose that the configurational entropy of mixing is a reliable descriptor to predict the phase formation of β-type (nRExi)2Si2O7. The results may accelerate the design of (nRExi)2Si2O7 materials with tailored compositions and controlled polymorphic phases.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2023.19</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:7e-ar</dc:identifier>
  <dc:identifier>mcid:2023.19</dc:identifier>
  <dc:identifier>oai:materialscloud.org:1640</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>High-entropy ceramics</dc:subject>
  <dc:subject>Phase formation</dc:subject>
  <dc:subject>Rare-earth disilicate</dc:subject>
  <dc:subject>Environmental barrier coating</dc:subject>
  <dc:subject>Density-functional theory</dc:subject>
  <dc:subject>Experimental</dc:subject>
  <dc:title>Phase formation capability and compositional design of β-phase multiple rare-earth principal component disilicates</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>