On-site and inter-site Hubbard corrections in magnetic monolayers: The case of FePS₃ and CrI₃


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Haddadi, Fatemeh</dc:creator>
  <dc:creator>Linscott, Edward</dc:creator>
  <dc:creator>Timrov, Iurii</dc:creator>
  <dc:creator>Marzari, Nicola</dc:creator>
  <dc:creator>Gibertini, Marco</dc:creator>
  <dc:date>2024-01-30</dc:date>
  <dc:description>Hubbard-corrected density-functional theory has proven to be successful in addressing self-interaction errors in 3D magnetic materials. However, the effectiveness of this approach for 2D magnetic materials has not been extensively explored. Here, we use PBEsol+U and its extensions PBEsol+U+V to investigate the electronic, structural, and vibrational properties of 2D antiferromagnetic FePS₃ and ferromagnetic CrI₃, and compare the monolayers with their bulk counterparts. Hubbard parameters (on-site U and inter-site V) are computed self-consistently using density-functional perturbation theory, thus avoiding any empirical assumptions. We show that for FePS₃ the Hubbard corrections are crucial in obtaining the experimentally observed insulating state with the correct crystal symmetry, providing also vibrational frequencies in good agreement with Raman experiments. While empirical U can lead to an unstable ground-state (i.e. imaginary phonons), the system remains stable through the self-consistent process of calculating Hubbard parameters. 
For ferromagnetic CrI₃, we discuss how a straightforward application of Hubbard corrections worsens the results and introduces a spurious separation between spin-majority and minority conduction bands. Promoting the Hubbard U to be a spin-resolved parameter — that is, applying different (first-principles) values to the spin-up and spin-down manifolds — recovers a more physical picture of the electronic bands and delivers the best comparison with experiments.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2024.18</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:ez-6k</dc:identifier>
  <dc:identifier>mcid:2024.18</dc:identifier>
  <dc:identifier>oai:materialscloud.org:1743</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>DFT</dc:subject>
  <dc:subject>DFT+U</dc:subject>
  <dc:subject>DFT+U+V</dc:subject>
  <dc:subject>first principles</dc:subject>
  <dc:subject>Hubbard</dc:subject>
  <dc:subject>2D materials</dc:subject>
  <dc:subject>2D magnets</dc:subject>
  <dc:subject>cscs</dc:subject>
  <dc:subject>MARVEL/DD3</dc:subject>
  <dc:subject>EPFL</dc:subject>
  <dc:subject>Quantum ESPRESSO</dc:subject>
  <dc:title>On-site and inter-site Hubbard corrections in magnetic monolayers: The case of FePS₃ and CrI₃</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>