Hydrodynamic finite-size scaling of the thermal conductivity in glasses


JSON Export

{
  "revision": 6, 
  "id": "1843", 
  "created": "2023-07-26T16:34:48.036830+00:00", 
  "metadata": {
    "doi": "10.24435/materialscloud:k2-0n", 
    "status": "published", 
    "title": "Hydrodynamic finite-size scaling of the thermal conductivity in glasses", 
    "mcid": "2023.120", 
    "license_addendum": null, 
    "_files": [
      {
        "description": "Archive containing all the folders and files detailed in the README file.", 
        "key": "archive.zip", 
        "size": 2688837249, 
        "checksum": "md5:b52008cd7331377401ef44f6ad6d6d7f"
      }, 
      {
        "description": "README file with details", 
        "key": "README.txt", 
        "size": 3010, 
        "checksum": "md5:6d7dbb0383e2e423657fc314bbf74fec"
      }
    ], 
    "owner": 225, 
    "_oai": {
      "id": "oai:materialscloud.org:1843"
    }, 
    "keywords": [
      "MaX", 
      "thermal transport", 
      "glasses", 
      "amorphous solids", 
      "size effects"
    ], 
    "conceptrecid": "1842", 
    "is_last": true, 
    "references": [
      {
        "type": "Journal reference", 
        "doi": "10.1038/s41524-023-01116-2", 
        "url": "https://www.nature.com/articles/s41524-023-01116-2", 
        "citation": "A. Fiorentino, P. Pegolo, S. Baroni, npj Computational Materials 9, 157 (2023)"
      }, 
      {
        "type": "Preprint", 
        "doi": "10.48550/arXiv.2303.07010", 
        "url": "https://arxiv.org/abs/2303.07010", 
        "comment": "Preprint in which the method is described", 
        "citation": "A. Fiorentino, P. Pegolo, S. Baroni, arXiv:2303.07010"
      }
    ], 
    "publication_date": "Jul 28, 2023, 09:20:52", 
    "license": "Creative Commons Attribution 4.0 International", 
    "id": "1843", 
    "description": "In the past few years, the theory of thermal transport in amorphous solids has been substantially extended beyond the Allen-Feldman model. The resulting formulation, based on the Green-Kubo linear response or the Wigner-transport equation, bridges this model for glasses with the traditional Boltzmann kinetic approach for crystals. The computational effort required by these methods usually scales as the cube of the number of atoms, thus severely limiting the size range of computationally affordable glass models. Leveraging hydrodynamic arguments, we show how this issue can be overcome through a simple formula to extrapolate a reliable estimate of the bulk thermal conductivity of glasses from finite models of moderate size. We showcase our findings for realistic models of paradigmatic glassy materials.\nThis repository contains example inputs to compute the hydrodynamic extrapolation of the thermal conductivity of glasses.\nExplicit examples are for amorphous silicon. Optimized atomic configurations are provided also for amorphous silica and silicon carbide.", 
    "version": 1, 
    "contributors": [
      {
        "email": "afiorent@sissa.it", 
        "affiliations": [
          "SISSA\u2014Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy"
        ], 
        "familyname": "Fiorentino", 
        "givennames": "Alfredo"
      }, 
      {
        "email": "ppegolo@sissa.it", 
        "affiliations": [
          "SISSA\u2014Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy"
        ], 
        "familyname": "Pegolo", 
        "givennames": "Paolo"
      }, 
      {
        "email": "baroni@sissa.it", 
        "affiliations": [
          "SISSA\u2014Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy", 
          "CNR\u2014Istituto Officina dei Materiali, SISSA, 34136 Trieste, Italy"
        ], 
        "familyname": "Baroni", 
        "givennames": "Stefano"
      }
    ], 
    "edited_by": 225
  }, 
  "updated": "2024-03-18T14:53:00.654342+00:00"
}