<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Fernandez Troncoso, Javier</dc:creator> <dc:creator>Lorenzin, Giacomo</dc:creator> <dc:creator>Cancellieri, Claudia</dc:creator> <dc:creator>Turlo, Vladyslav</dc:creator> <dc:date>2023-08-31</dc:date> <dc:description>Thermal annealing experiments evidence opposite effect on the degradation kinetics of Cu/W nano-multilayers from compressive to tensile in-plane strain. Besides higher activation energy, nano-multilayers with tensile strains degrade to nanocomposites faster than those with compressive strains. By assuming a vacancy-driven diffusion mechanism of degradation, we applied ab initio calculations to quantify different contributions to the corresponding diffusion coefficients in relation to in-plane strain. The average vacancy formation energy increases as the strain changes from compressive to tensile, which explains the higher experimental activation energy. The bulk in-plane and out-of-plane vacancy migration energies and corresponding diffusion prefactors highlight that enhanced transformation rate under tension can be explained by the segregation of non-equilibrium W vacancies to Cu/W interfaces. Our thermodynamic evaluation of grain boundary wetting and grooving by hybrid molecular dynamics/Monte Carlo method further supports this point, as both stress states enhance W grain separation to the same level.</dc:description> <dc:identifier>https://archive.materialscloud.org/record/2023.134</dc:identifier> <dc:identifier>doi:10.24435/materialscloud:ah-f4</dc:identifier> <dc:identifier>mcid:2023.134</dc:identifier> <dc:identifier>oai:materialscloud.org:1878</dc:identifier> <dc:language>en</dc:language> <dc:publisher>Materials Cloud</dc:publisher> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>nano-multilayers</dc:subject> <dc:subject>degradation kinetics</dc:subject> <dc:subject>Cu/W</dc:subject> <dc:subject>in-plane strain</dc:subject> <dc:subject>vacancy-driven diffusion</dc:subject> <dc:subject>ab initio calculations</dc:subject> <dc:title>Explaining the effect of in-plane strain on thermal degradation kinetics of Cu/W nano-multilayers</dc:title> <dc:type>Dataset</dc:type> </oai_dc:dc>