Achieving 19% efficiency in nonfused ring electron acceptor solar cells via solubility hysteresis sequential condensation strategy
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:creator>Zeng, Rui</dc:creator>
<dc:creator>Zhang, Ming</dc:creator>
<dc:creator>Wang, Xiaodong</dc:creator>
<dc:creator>Zhu, Lei</dc:creator>
<dc:creator>Hao, Bonan</dc:creator>
<dc:creator>Zhong, Wenkai</dc:creator>
<dc:creator>Zhou, Guanqing</dc:creator>
<dc:creator>Zhuang, Jiaxing</dc:creator>
<dc:creator>Zhang, Anyang</dc:creator>
<dc:creator>Han, Fei</dc:creator>
<dc:creator>Zhou, Zichun</dc:creator>
<dc:creator>Xue, Xiaonan</dc:creator>
<dc:creator>Xu, Shengjie</dc:creator>
<dc:creator>Xu, Jinqiu</dc:creator>
<dc:creator>Liu, Yahui</dc:creator>
<dc:creator>Lu, Hao</dc:creator>
<dc:creator>Wu, Xuefei</dc:creator>
<dc:creator>Wang, Cheng</dc:creator>
<dc:creator>Fink, Zachary</dc:creator>
<dc:creator>Russell, Thomas P.</dc:creator>
<dc:creator>Jing, Hao</dc:creator>
<dc:creator>Zhang, Yongming</dc:creator>
<dc:creator>Bo, Zhishan</dc:creator>
<dc:creator>Liu, Feng</dc:creator>
<dc:date>2023-08-31</dc:date>
<dc:description>Nonfused ring electron acceptors (NFREAs) are interesting n-type near infrared (NIR) photoactive semiconductors with strong molecular absorption and easy synthetic route. However, the low backbone planarity and bulky substitution make NFREA less crystalline, which significantly retards charge transport and the formation of bicontinuous morphology in organic photovoltaic device. Donor and acceptor solubility in different solvents is studied, and the created solubility hysteresis can induce the formation of the highly crystalline donor polymer fibril to purify the NFREA phase, thus a better bicontinuous morphology with improved crystallinity. Based on these results, a general solubility hysteresis sequential condensation (SHSC) thin film fabrication methodology is established to produce highly uniform and smooth photoactive layer. The well-defined interpenetrating network morphology afforded a record efficiency of 19.02%, which is ~22% improvement comparing to conventional device fabrication. A high efficiency retention (Pr) value of 92.3% is achieved in 1 cm² device (17.28% efficiency).</dc:description>
<dc:identifier>https://archive.materialscloud.org/record/2023.135</dc:identifier>
<dc:identifier>doi:10.24435/materialscloud:nt-y8</dc:identifier>
<dc:identifier>mcid:2023.135</dc:identifier>
<dc:identifier>oai:materialscloud.org:1882</dc:identifier>
<dc:language>en</dc:language>
<dc:publisher>Materials Cloud</dc:publisher>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
<dc:subject>organic solar cells</dc:subject>
<dc:subject>nonfused ring electron acceptor</dc:subject>
<dc:subject>record efficiency</dc:subject>
<dc:subject>large-area device</dc:subject>
<dc:subject>experimental</dc:subject>
<dc:title>Achieving 19% efficiency in nonfused ring electron acceptor solar cells via solubility hysteresis sequential condensation strategy</dc:title>
<dc:type>Dataset</dc:type>
</oai_dc:dc>