Critical step in the HCl oxidation reaction over single-crystalline CeO2−x(111): Peroxo-induced site change of strongly adsorbed surface chlorine
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:creator>Koller, Volkmar</dc:creator>
<dc:creator>Lustemberg, Pablo G.</dc:creator>
<dc:creator>Spriewald-Luciano, Alexander</dc:creator>
<dc:creator>Gericke, Sabrina M.</dc:creator>
<dc:creator>Larsson, Alfred</dc:creator>
<dc:creator>Sack, Christian</dc:creator>
<dc:creator>Preobrajenski, Alexei</dc:creator>
<dc:creator>Lundgren, Edvin</dc:creator>
<dc:creator>Ganduglia-Pirovano, M. Veronica</dc:creator>
<dc:creator>Over, Herbert</dc:creator>
<dc:date>2023-09-19</dc:date>
<dc:description>The catalytic oxidation of HCl by molecular oxygen (Deacon process) over ceria allows the recovery of molecular chlorine from omnipresent HCl waste produced in various industrial processes. In previous density functional theory (DFT) model calculations by Amrute et al. [J. Catal. 2012, 286, 287–297.], it was proposed that the most critical reaction step in this process is the displacement of tightly bound chlorine at a vacant oxygen position on the CeO2(111) surface (Clvac) toward a less strongly bound cerium on-top (Cltop) position. This step is highly endothermic by more than 2 eV. On the basis of a dedicated model study, namely the re-oxidation of a chlorinated single crystalline Clvac-CeO2−x(111)-(√3 × √3)R30° surface structure, we provide in-situ synchrotron-based spectroscopic data (high-resolution core level spectroscopy (HRCLS) and X-ray adsorption near edge structure (XANES)) for this oxygen-induced de-chlorination process. Combined with theoretical evidence from DFT calculations, the Clvac → Cltop displacement reaction is predicted to be induced by an adsorbed peroxo species (O22-), making the displacement step concerted and exothermic by only 0.6 eV with an activation barrier of only 1.04 eV. The peroxo species is shown to be important for the re-oxidation of Clvac-CeO2−x(111) and is considered essential for understanding the function of ceria in oxidation catalysis.</dc:description>
<dc:identifier>https://archive.materialscloud.org/record/2023.143</dc:identifier>
<dc:identifier>doi:10.24435/materialscloud:dq-1c</dc:identifier>
<dc:identifier>mcid:2023.143</dc:identifier>
<dc:identifier>oai:materialscloud.org:1906</dc:identifier>
<dc:language>en</dc:language>
<dc:publisher>Materials Cloud</dc:publisher>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
<dc:subject>Deacon process</dc:subject>
<dc:subject>reduced ceria</dc:subject>
<dc:subject>peroxo surface species</dc:subject>
<dc:subject>displacement of strongly adsorbed chlorine</dc:subject>
<dc:subject>oxygen-induced de-chlorination process</dc:subject>
<dc:title>Critical step in the HCl oxidation reaction over single-crystalline CeO2−x(111): Peroxo-induced site change of strongly adsorbed surface chlorine</dc:title>
<dc:type>Dataset</dc:type>
</oai_dc:dc>