Do we really need machine learning interatomic potentials for modeling amorphous metal oxides? Case study on amorphous alumina by recycling an existing ab-initio database.


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Gramatte, SImon</dc:creator>
  <dc:creator>Turlo, Vladyslav</dc:creator>
  <dc:date>2023-09-26</dc:date>
  <dc:description>In this study, we benchmarked various interatomic potentials and force fields in comparison to an ab initio dataset for bulk amorphous alumina. We investigated a comprehensive set of fixed-charge and variable-charge potentials tailored for alumina. We also train a machine learning interatomic potential, using the NequIP framework. Results highlight that the fixed-charge potential by Matsui provides an ideal blend of computational speed and alignment with ab initio findings for stoichiometric alumina. For non-stoichiometric variants, the variable charge potentials, especially ReaxFF, align remarkably well with DFT outcomes. The NequIP ML potential, while superior in some instances and adaptable, might not be the best fit for specific tasks.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2023.147</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:ya-3k</dc:identifier>
  <dc:identifier>mcid:2023.147</dc:identifier>
  <dc:identifier>oai:materialscloud.org:1914</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>machine learning</dc:subject>
  <dc:subject>molecular dynamics</dc:subject>
  <dc:subject>MARVEL/DD1</dc:subject>
  <dc:title>Do we really need machine learning interatomic potentials for modeling amorphous metal oxides?
Case study on amorphous alumina by recycling an existing ab-initio database.</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>