Surface segregation in high-entropy alloys from alchemical machine learning: dataset HEA25S
JSON Export
{
"revision": 4,
"id": "1946",
"created": "2023-10-21T11:10:15.350564+00:00",
"metadata": {
"doi": "10.24435/materialscloud:ps-20",
"status": "published",
"title": "Surface segregation in high-entropy alloys from alchemical machine learning: dataset HEA25S",
"mcid": "2023.160",
"license_addendum": null,
"_files": [
{
"description": "This README describes the HEA25S dataset containing compressed XYZ configurations (data.zip), HEA25-4-NN and HEA25S-4-NN models in the PyTorch model dict format (models.zip), and VASP settings used for calculations (vasp_settings.zip)",
"key": "README.md",
"size": 2682,
"checksum": "md5:42199073093e01ec0c39ddf6483efccb"
},
{
"description": "A zipped folder with XYZ files of the HEA25S dataset, containing 5 different classes of HEA data used in the study, spliced by the train, validation and test sets",
"key": "data.zip",
"size": 31140296,
"checksum": "md5:b3d9dc10f8d28a31954e220b70eb86f3"
},
{
"description": "A zipped folder with HEA25-4-NN and HEA25S-4-NN models in the PyTorch model dict format",
"key": "models.zip",
"size": 2625909,
"checksum": "md5:594636e633280755c1569f4a3f1ecc1b"
},
{
"description": "A zipped folder with the VASP INCAR file",
"key": "vasp_settings.zip",
"size": 1309,
"checksum": "md5:15ddf00bbac033a7f8f202f38a694102"
}
],
"owner": 1163,
"_oai": {
"id": "oai:materialscloud.org:1946"
},
"keywords": [
"machine learning",
"high-entropy alloys",
"surface segregation",
"atomistic modeling",
"density-functional theory",
"alchemical compression",
"MARVEL",
"COSMO"
],
"conceptrecid": "1945",
"is_last": false,
"references": [
{
"type": "Preprint",
"doi": "10.48550/arXiv.2310.07604",
"url": "https://arxiv.org/abs/2310.07604",
"comment": "In this reference, a comprehensive discussion on the construction of the dataset, as well as the study of surface segregation in HEAs can be found.",
"citation": "A. Mazitov, M. A. Springer, N. Lopanitsyna, G. Fraux, S. De, and M. Ceriotti, arXiv preprint arXiv:2310.07604, (2023)"
}
],
"publication_date": "Oct 23, 2023, 10:11:15",
"license": "Creative Commons Attribution 4.0 International",
"id": "1946",
"description": "High-entropy alloys (HEAs), containing several metallic elements in near-equimolar proportions, have long been of interest for their unique mechanical properties. More recently, they have emerged as a promising platform for the development of novel heterogeneous catalysts, because of the large design space, and the synergistic effects between their components. In this work we use a machine-learning potential that can model simultaneously up to 25 transition metals (d-block transition metals, excluding Tc, Cd, Re, Os and Hg) to study the tendency of different elements to segregate at the surface of a HEA.\nIn this record, we provide a dataset HEA25S, containing 10000 bulk HEA structures (Dataset O), 2640 HEA surface slabs (Dataset A), together with 1000 bulk and 1000 surface slabs snapshots from the molecular dynamics (MD) runs (Datasets B and C), and 500 MD snapshots of the 25 elements Cantor-style alloy surface slabs.\nWe also provide the HEA25-4-NN and HEA25S-4-NN final models, which were used in the study. Full description of both the dataset and the models can be found the reference paper below.",
"version": 1,
"contributors": [
{
"email": "arslan.mazitov@epfl.ch",
"affiliations": [
"Laboratory of Computational Science and Modeling, IMX, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015 Lausanne, Switzerland"
],
"familyname": "Mazitov",
"givennames": "Arslan"
},
{
"affiliations": [
"BASF SE, Carl-Bosch-Stra\u00dfe 38, 67056 Ludwigshafen, Germany"
],
"familyname": "Springer",
"givennames": "Maximilian A."
},
{
"affiliations": [
"Laboratory of Computational Science and Modeling, IMX, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015 Lausanne, Switzerland"
],
"familyname": "Lopanitsyna",
"givennames": "Nataliya"
},
{
"affiliations": [
"Laboratory of Computational Science and Modeling, IMX, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015 Lausanne, Switzerland"
],
"familyname": "Fraux",
"givennames": "Guillaume"
},
{
"affiliations": [
"BASF SE, Carl-Bosch-Stra\u00dfe 38, 67056 Ludwigshafen, Germany"
],
"familyname": "De",
"givennames": "Sandip"
},
{
"email": "michele.ceriotti@epfl.ch",
"affiliations": [
"Laboratory of Computational Science and Modeling, IMX, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015 Lausanne, Switzerland"
],
"familyname": "Ceriotti",
"givennames": "Michele"
}
],
"edited_by": 1163
},
"updated": "2024-03-04T06:04:05.714963+00:00"
}