Water and Cu⁺ synergy in selective CO₂ hydrogenation to methanol over Cu/MgO catalysts


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Fernández Villanueva, Estefanía</dc:creator>
  <dc:creator>Lustemberg, Pablo Germán</dc:creator>
  <dc:creator>Zhao, Minjie</dc:creator>
  <dc:creator>Soriano, Jose</dc:creator>
  <dc:creator>Concepción, Patricia</dc:creator>
  <dc:creator>Ganduglia Pirovano, María Verónica</dc:creator>
  <dc:date>2023-12-20</dc:date>
  <dc:description>The CO₂ hydrogenation reaction to produce methanol holds great significance as it contributes to achieving a CO₂-neutral economy. Previous research identified isolated Cu⁺ species doping the oxide surface of a Cu-MgO-Al₂O₃ mixed oxide derived from a hydrotalcite precursor as the active site in CO₂ hydrogenation, stabilizing monodentate formate species as a crucial intermediate in methanol synthesis. In this work, we present a molecular-level understanding of how surface water and hydroxyl groups play a crucial role in facilitating spontaneous CO₂ activation at Cu⁺ sites and the formation of monodentate formate species. The computational evidence has been experimentally validated by comparing the catalytic performance of the Cu-MgO-Al₂O₃ catalyst with hydroxyl groups against its hydrophobic counterpart, where hydroxyl groups are blocked using an esterification method. Our work highlights the synergistic effect between doped Cu⁺ ions and adjacent hydroxyl groups, both of which serve as key parameters in regulating methanol production via CO₂ hydrogenation. By elucidating the specific roles of these components, we contribute to advancing the understanding of the underlying mechanisms and provide valuable insights for optimizing methanol synthesis processes.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2023.197</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:tz-pn</dc:identifier>
  <dc:identifier>mcid:2023.197</dc:identifier>
  <dc:identifier>oai:materialscloud.org:2034</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Computational chemistry</dc:subject>
  <dc:subject>Heterogeneous catalysis</dc:subject>
  <dc:subject>CO2 hydrogenation</dc:subject>
  <dc:subject>Methanol</dc:subject>
  <dc:subject>Copper</dc:subject>
  <dc:subject>MgO</dc:subject>
  <dc:subject>DFT</dc:subject>
  <dc:title>Water and Cu⁺ synergy in selective CO₂ hydrogenation to methanol over Cu/MgO catalysts</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>