Spin-dependent interactions in orbital-density-dependent functionals: non-collinear Koopmans spectral functionals


JSON Export

{
  "id": "2052", 
  "updated": "2024-09-02T10:07:06.438686+00:00", 
  "metadata": {
    "version": 1, 
    "contributors": [
      {
        "givennames": "Antimo", 
        "affiliations": [
          "Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy", 
          "Dipartimento di Fisica, Universita' di Trieste, Strada Costiera 11, I-34151 Trieste, Italy"
        ], 
        "email": "antimo.marrazzo@units.it", 
        "familyname": "Marrazzo"
      }, 
      {
        "givennames": "Nicola", 
        "affiliations": [
          "Laboratory for Materials Simulations, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland", 
          "National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland"
        ], 
        "email": "nicola.colonna@psi.ch", 
        "familyname": "Colonna"
      }
    ], 
    "title": "Spin-dependent interactions in orbital-density-dependent functionals: non-collinear Koopmans spectral functionals", 
    "_oai": {
      "id": "oai:materialscloud.org:2052"
    }, 
    "keywords": [
      "MARVEL/P4", 
      "SNSF", 
      "Spin-orbit coupling", 
      "Spin-dependent interactions", 
      "Non-collinear magnetism", 
      "Spectral functionals", 
      "Transition-metal dichalcogenide", 
      "Metal halide perovskite", 
      "Spin-torque"
    ], 
    "publication_date": "Jun 03, 2024, 12:03:06", 
    "_files": [
      {
        "key": "README.txt", 
        "description": "File with a detailed description of the content of the archive \"data.tar.gz\"", 
        "checksum": "md5:5727b52370e367cdd121d73d7f2c5524", 
        "size": 9056
      }, 
      {
        "key": "data.tar.gz", 
        "description": "Archive with all the input and output files to reproduce the results", 
        "checksum": "md5:cc0705d36c19c977b42627907d5b3ae4", 
        "size": 121415303
      }
    ], 
    "references": [
      {
        "comment": "Paper where the method is presented and the data discussed", 
        "doi": "https://doi.org/10.1103/PhysRevResearch.6.033085", 
        "citation": "A. Marrazzo, and N. Colonna, Phys. Rev. Research 6, 033085 (2024)", 
        "url": "https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.033085", 
        "type": "Journal reference"
      }, 
      {
        "comment": "Preprint where the data is discussed", 
        "doi": "https://doi.org/10.48550/arXiv.2402.14575", 
        "citation": "A. Marrazzo, and N. Colonna, arXiv:2402.14575 (2024)", 
        "url": "https://doi.org/10.48550/arXiv.2402.14575", 
        "type": "Preprint"
      }
    ], 
    "description": "The presence of spin-orbit coupling or non-collinear magnetic spin states can have dramatic effects on the ground-state and spectral properties of materials, in particular on the band structure. Here, we develop non-collinear Koopmans-compliant functionals based on Wannier functions and density-functional perturbation theory, targeting accurate spectral properties in the quasiparticle approximation. Our non-collinear Koopmans-compliant theory involves functionals of four-component orbitals densities, that can be obtained from the charge and spin-vector densities of Wannier functions. We validate our approach on four emblematic non-magnetic and magnetic semiconductors where the effect of spin-orbit coupling goes from small to very large: the III-IV semiconductor GaAs, the transition-metal dichalcogenide WSe\u2082, the cubic perovskite CsPbBr\u2083, and the ferromagnetic semiconductor CrI\u2083. \nThe predicted band gaps are comparable in accuracy to state-of-the-art many-body perturbation theory and include spin-dependent interactions and screening effects that are missing in standard diagrammatic approaches based on the random phase approximation. While the inclusion of orbital- and spin-dependent interactions in many-body perturbation theory requires self-screening or vertex corrections, they emerge naturally in the Koopmans-functionals framework.", 
    "status": "published", 
    "license": "Creative Commons Attribution 4.0 International", 
    "conceptrecid": "2051", 
    "is_last": true, 
    "mcid": "2024.83", 
    "edited_by": 53, 
    "id": "2052", 
    "owner": 53, 
    "license_addendum": null, 
    "doi": "10.24435/materialscloud:kp-2v"
  }, 
  "revision": 8, 
  "created": "2024-01-16T14:43:02.031863+00:00"
}