Spin-dependent interactions in orbital-density-dependent functionals: non-collinear Koopmans spectral functionals
JSON Export
{
"revision": 8,
"id": "2052",
"created": "2024-01-16T14:43:02.031863+00:00",
"metadata": {
"doi": "10.24435/materialscloud:kp-2v",
"status": "published",
"title": "Spin-dependent interactions in orbital-density-dependent functionals: non-collinear Koopmans spectral functionals",
"mcid": "2024.83",
"license_addendum": null,
"_files": [
{
"description": "File with a detailed description of the content of the archive \"data.tar.gz\"",
"key": "README.txt",
"size": 9056,
"checksum": "md5:5727b52370e367cdd121d73d7f2c5524"
},
{
"description": "Archive with all the input and output files to reproduce the results",
"key": "data.tar.gz",
"size": 121415303,
"checksum": "md5:cc0705d36c19c977b42627907d5b3ae4"
}
],
"owner": 53,
"_oai": {
"id": "oai:materialscloud.org:2052"
},
"keywords": [
"MARVEL/P4",
"SNSF",
"Spin-orbit coupling",
"Spin-dependent interactions",
"Non-collinear magnetism",
"Spectral functionals",
"Transition-metal dichalcogenide",
"Metal halide perovskite",
"Spin-torque"
],
"conceptrecid": "2051",
"is_last": true,
"references": [
{
"type": "Journal reference",
"doi": "https://doi.org/10.1103/PhysRevResearch.6.033085",
"url": "https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.033085",
"comment": "Paper where the method is presented and the data discussed",
"citation": "A. Marrazzo, and N. Colonna, Phys. Rev. Research 6, 033085 (2024)"
},
{
"type": "Preprint",
"doi": "https://doi.org/10.48550/arXiv.2402.14575",
"url": "https://doi.org/10.48550/arXiv.2402.14575",
"comment": "Preprint where the data is discussed",
"citation": "A. Marrazzo, and N. Colonna, arXiv:2402.14575 (2024)"
}
],
"publication_date": "Jun 03, 2024, 12:03:06",
"license": "Creative Commons Attribution 4.0 International",
"id": "2052",
"description": "The presence of spin-orbit coupling or non-collinear magnetic spin states can have dramatic effects on the ground-state and spectral properties of materials, in particular on the band structure. Here, we develop non-collinear Koopmans-compliant functionals based on Wannier functions and density-functional perturbation theory, targeting accurate spectral properties in the quasiparticle approximation. Our non-collinear Koopmans-compliant theory involves functionals of four-component orbitals densities, that can be obtained from the charge and spin-vector densities of Wannier functions. We validate our approach on four emblematic non-magnetic and magnetic semiconductors where the effect of spin-orbit coupling goes from small to very large: the III-IV semiconductor GaAs, the transition-metal dichalcogenide WSe\u2082, the cubic perovskite CsPbBr\u2083, and the ferromagnetic semiconductor CrI\u2083. \nThe predicted band gaps are comparable in accuracy to state-of-the-art many-body perturbation theory and include spin-dependent interactions and screening effects that are missing in standard diagrammatic approaches based on the random phase approximation. While the inclusion of orbital- and spin-dependent interactions in many-body perturbation theory requires self-screening or vertex corrections, they emerge naturally in the Koopmans-functionals framework.",
"version": 1,
"contributors": [
{
"email": "antimo.marrazzo@units.it",
"affiliations": [
"Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy",
"Dipartimento di Fisica, Universita' di Trieste, Strada Costiera 11, I-34151 Trieste, Italy"
],
"familyname": "Marrazzo",
"givennames": "Antimo"
},
{
"email": "nicola.colonna@psi.ch",
"affiliations": [
"Laboratory for Materials Simulations, Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland",
"National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland"
],
"familyname": "Colonna",
"givennames": "Nicola"
}
],
"edited_by": 53
},
"updated": "2024-09-02T10:07:06.438686+00:00"
}