Low-energy modeling of three-dimensional topological insulator nanostructures


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Zsurka, Eduárd</dc:creator>
  <dc:creator>Wang, Cheng</dc:creator>
  <dc:creator>Legendre, Julian</dc:creator>
  <dc:creator>Di Miceli, Daniele</dc:creator>
  <dc:creator>Serra, Llorenç</dc:creator>
  <dc:creator>Grützmacher, Detlev</dc:creator>
  <dc:creator>Schmidt, Thomas L.</dc:creator>
  <dc:creator>Rüßmann, Philipp</dc:creator>
  <dc:creator>Moors, Kristof</dc:creator>
  <dc:date>2024-07-05</dc:date>
  <dc:description>We develop an accurate nanoelectronic modeling approach for realistic three-dimensional topological insulator nanostructures and investigate their low-energy surface-state spectrum. Starting from the commonly considered four-band k·p bulk model Hamiltonian for the Bi₂Se₃ family of topological insulators, we derive new parameter sets for Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃. We consider a fitting strategy applied to ab initio band structures around the Γ point that ensures a quantitatively accurate description of the low-energy bulk and surface states, while avoiding the appearance of unphysical low-energy states at higher momenta, something that is not guaranteed by the commonly considered perturbative approach. We analyze  the effects that arise in the low-energy spectrum of topological surface states due to band anisotropy and electron-hole asymmetry, yielding Dirac surface states that naturally localize on different side facets. In the thin-film limit, when surface states hybridize through the bulk, we resort to a thin-film model and derive thickness-dependent model parameters from ab initio calculations that show good agreement with experimentally resolved band structures, unlike the bulk model that neglects relevant many-body effects in this regime. Our versatile modeling approach offers a reliable starting point for accurate simulations of realistic topological material-based nanoelectronic devices.
This dataset contains the data used in the corresponding publication.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2024.106</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:mx-bn</dc:identifier>
  <dc:identifier>mcid:2024.106</dc:identifier>
  <dc:identifier>oai:materialscloud.org:2129</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>DFT</dc:subject>
  <dc:subject>topological insulator</dc:subject>
  <dc:subject>tight-binding</dc:subject>
  <dc:subject>k.p low energy model</dc:subject>
  <dc:subject>effective Hamiltonian</dc:subject>
  <dc:title>Low-energy modeling of three-dimensional topological insulator nanostructures</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>