Ab initio simulation of band-to-band tunneling FETs with single- and few-layer 2-D materials as channels


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Luisier, Mathieu</dc:creator>
  <dc:creator>Szabo, Aron</dc:creator>
  <dc:creator>Klinkert, Cedric</dc:creator>
  <dc:creator>Campi, Davide</dc:creator>
  <dc:creator>Stieger, Christian</dc:creator>
  <dc:creator>Marzari, Nicola</dc:creator>
  <dc:date>2019-10-11</dc:date>
  <dc:description>Full-band atomistic quantum transport simulations based on first principles are employed to assess the potential of band-to-band tunneling field-effect-transistors (TFETs) with a 2-D channel material as future electronic circuit components. We demonstrate that single layer transition metal dichalcogenides (TMDs) are not well-suited for TFET applications. There might, however, exist a great variety of 2-D semiconductors that have not even been exfoliated yet: this work pinpoints some of the most promising candidates among them to realize highly efficient TFETs. Single-layer SnTe, As, TiNBr, and Bi are all found to ideally deliver ON-currents larger than 100 μA/μm at 0.5 V supply voltage and 0.1 nA/μm OFF current value. We show that going from single to multiple layers can boost the TFET performance as long as the gain from a narrowing band gap exceeds the loss from the deteriorating gate control. Finally, a 2-D van der Waals heterojunction TFET is revealed to perform almost as well as the best single-layer homojunction, paving the way for research in optimal 2-D material combinations.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2019.0058/v1</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:2019.0058/v1</dc:identifier>
  <dc:identifier>mcid:2019.0058/v1</dc:identifier>
  <dc:identifier>oai:materialscloud.org:216</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>MARVEL/DD3</dc:subject>
  <dc:subject>Device simulation</dc:subject>
  <dc:subject>TFETs</dc:subject>
  <dc:subject>2-D materials</dc:subject>
  <dc:subject>Ab initio</dc:subject>
  <dc:subject>Quantum Transport</dc:subject>
  <dc:title>Ab initio simulation of band-to-band tunneling FETs with single- and few-layer 2-D materials as channels</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>