First-principles thermodynamics of precipitation in aluminum-containing refractory alloys


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Müller, Yann Lorris</dc:creator>
  <dc:creator>Raju Natarajan, Anirudh</dc:creator>
  <dc:date>2024-05-14</dc:date>
  <dc:description>Materials for high-temperature environments are actively being investigated for deployment in aerospace and nuclear applications. This study uses computational approaches to unravel the crystallography, and thermodynamics of a promising class of refractory alloys containing aluminum. Accurate first-principles calculations, cluster expansion models, and statistical mechanics techniques are employed to rigorously analyze precipitation in a prototypical senary Al-Nb-Ta-Ti-V-Zr alloy. Finite-temperature calculations reveal a strong tendency for aluminum to segregate to a single sublattice at elevated temperatures. Precipitate and matrix compositions computed with our ab-initio model are in excellent agreement with previous experimental measurements (Soni et al., 2020). Surprisingly, conventional B2-like orderings are found to be both thermodynamically and mechanically unstable in this alloy system. Complex anti-site defects are essential to forming a stable ordered precipitate. Our calculations reveal that the instability of B2 compounds can be related to a simple electron counting rule across all binary alloys formed by elements in groups 4,5, and 6. The results of this study provide viable routes toward designing high-temperature materials for deployment in extreme environments.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2024.72</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:th-d5</dc:identifier>
  <dc:identifier>mcid:2024.72</dc:identifier>
  <dc:identifier>oai:materialscloud.org:2183</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>cluster expansion</dc:subject>
  <dc:subject>ab initio</dc:subject>
  <dc:subject>alloy theory</dc:subject>
  <dc:subject>precipitation</dc:subject>
  <dc:subject>phase stability</dc:subject>
  <dc:subject>MARVEL/P1</dc:subject>
  <dc:title>First-principles thermodynamics of precipitation in aluminum-containing refractory alloys</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>