Tailoring magnetism of graphene nanoflakes via tip-controlled dehydrogenation


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Zhao, Chenxiao</dc:creator>
  <dc:creator>Huang, Qiang</dc:creator>
  <dc:creator>Valenta, Leoš</dc:creator>
  <dc:creator>Eimre, Kristjan</dc:creator>
  <dc:creator>Yang, Lin</dc:creator>
  <dc:creator>V. Yakutovich, Aliaksandr</dc:creator>
  <dc:creator>Xu, Wangwei</dc:creator>
  <dc:creator>Feng, Xinliang</dc:creator>
  <dc:creator>Juríček, Michal</dc:creator>
  <dc:creator>Fasel, Roman</dc:creator>
  <dc:creator>Ruffieux, Pascal</dc:creator>
  <dc:creator>Pignedoli, Carlo A.</dc:creator>
  <dc:date>2024-05-23</dc:date>
  <dc:description>Atomically precise graphene nanoflakes called nanographenes have emerged as a promising platform to realize carbon magnetism. Their ground state spin configuration can be anticipated by Ovchinnikov-Lieb rules based on the mismatch of π electrons from two sublattices. While rational geometrical design achieves specific spin configurations, further direct control over the π electrons offers a desirable extension for efficient spin manipulations and potential quantum device operations. To this end,  in a recent publication, we applied a site-specific dehydrogenation using a scanning tunneling microscope tip to nanographenes deposited on a Au(111) substrate, which showed the capability of precisely tailoring the underlying π-electron system and therefore efficiently manipulating their magnetism. Through first-principles calculations and tight-binding meanfield-Hubbard modeling, we demonstrated that the dehydrogenation-induced Au—C bond formation along with the resulting hybridization between frontier π orbitals and Au substrate states effectively eliminate the unpaired π electron. Our results establish an efficient technique for controlling the magnetism of nanographenes. This record contains data that support the scientific results discussed in our manuscript.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2024.79</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:yh-fj</dc:identifier>
  <dc:identifier>mcid:2024.79</dc:identifier>
  <dc:identifier>oai:materialscloud.org:2193</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>magnetic nanographene</dc:subject>
  <dc:subject>CSCS</dc:subject>
  <dc:subject>MARVEL/P4</dc:subject>
  <dc:subject>SNSF</dc:subject>
  <dc:subject>DFT</dc:subject>
  <dc:subject>STM</dc:subject>
  <dc:subject>on surface synthesis</dc:subject>
  <dc:title>Tailoring magnetism of graphene nanoflakes via tip-controlled dehydrogenation</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>