Electron transport through metal/MoS2 interfaces: edge- or area-dependent process?


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Luisier, Mathieu</dc:creator>
  <dc:creator>Szabo, Aron</dc:creator>
  <dc:creator>Jain, Achint</dc:creator>
  <dc:creator>Parzefall, Markus</dc:creator>
  <dc:creator>Novotny, Lukas</dc:creator>
  <dc:date>2019-10-14</dc:date>
  <dc:description>In ultra-thin two-dimensional (2-D) materials, the formation of ohmic contacts with top metallic layers is a challenging task that involves different processes than in bulk-like structures. Besides the Schottky barrier height, the transfer length of electrons between metals and 2-D monolayers is a highly relevant parameter. For MoS2, both short (≤30 nm) and long (≥0.5 μm) values have been reported, corresponding to either an abrupt carrier injection at the contact edge or a more gradual transfer of electrons over a large contact area. Here we use ab initio quantum transport simulations to demonstrate that the presence of an oxide layer between a metallic contact and a MoS2 monolayer, for example TiO2 in case of titanium electrodes, favors an area-dependent process with a long transfer length, while a perfectly clean metal-semiconductor interface would lead to an edge process. These findings reconcile several theories that have been postulated about the physics of metal/MoS2 interfaces and provide a framework to design future devices with lower contact resistances.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2019.0060/v1</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:2019.0060/v1</dc:identifier>
  <dc:identifier>mcid:2019.0060/v1</dc:identifier>
  <dc:identifier>oai:materialscloud.org:220</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>MARVEL/DD3</dc:subject>
  <dc:subject>2-D materials</dc:subject>
  <dc:subject>Metal-semiconductor interfaces</dc:subject>
  <dc:subject>Contact physics</dc:subject>
  <dc:subject> Transfer length</dc:subject>
  <dc:subject>Fermi level pinning</dc:subject>
  <dc:subject>Ab initio device simulations</dc:subject>
  <dc:title>Electron transport through metal/MoS2 interfaces: edge- or area-dependent process?</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>