Electron density learning of non-covalent systems
JSON Export
{
"revision": 1,
"id": "243",
"created": "2020-05-12T13:53:21.743217+00:00",
"metadata": {
"doi": "10.24435/materialscloud:2019.0071/v1",
"status": "published",
"title": "Electron density learning of non-covalent systems",
"mcid": "2019.0071/v1",
"license_addendum": "",
"_files": [
{
"description": "All the structures (xyz format) of the molecules included in the training and the test set.",
"key": "coordinates_training_test.tar.gz",
"size": 565861,
"checksum": "md5:d96cfc997cebe1ca4c7b92be416b1359"
},
{
"description": "All the reference density coefficients of the molecules included in the training and the test set.",
"key": "coefficients_training_test.tar.gz",
"size": 16340226,
"checksum": "md5:b5792d607bd75f307232fdcbfcc40eee"
},
{
"description": "All the predicted density coefficients of the molecules included in the test set.",
"key": "predicted_coefficients.zip",
"size": 107664448,
"checksum": "md5:253e172af6723799da7c10ca934e927d"
},
{
"description": "Data (structure and coefficients) to reconstruct the density of the extrapolated biomolecules.",
"key": "biomolecules.tar.gz",
"size": 516488,
"checksum": "md5:6a4ff66087fe9f99af8b647c470b40a7"
},
{
"description": "More detailed description of the files content",
"key": "README.txt",
"size": 880,
"checksum": "md5:3008ce8f7bfb052867ab791a26fe060c"
}
],
"owner": 22,
"_oai": {
"id": "oai:materialscloud.org:243"
},
"keywords": [
"MARVEL/DD1",
"Machine Learning",
"Electron density",
"Non-Covalent Systems"
],
"conceptrecid": "242",
"is_last": true,
"references": [
{
"type": "Journal reference",
"doi": "10.1039/C9SC02696G",
"url": "https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02696g#!divAbstract",
"comment": "",
"citation": "A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, C. Corminboeuf, Chem. Sci., Advance Article (2019)"
}
],
"publication_date": "Oct 28, 2019, 00:00:00",
"license": "Creative Commons Attribution 4.0 International",
"id": "243",
"description": "Chemists continuously harvest the power of non-covalent interactions to control phenomena in both the micro- and macroscopic worlds. From the quantum chemical perspective, the strategies essentially rely upon an in-depth understanding of the physical origin of these interactions, the quantification of their magnitude and their visualization in real-space. The total electron density \u03c1(r) represents the simplest yet most comprehensive piece of information available for fully characterizing bonding patterns and non-covalent interactions. The charge density of a molecule can be computed by solving the Schr\u00f6dinger equation, but this approach becomes rapidly demanding if the electron density has to be evaluated for thousands of different molecules or very large chemical systems, such as peptides and proteins. Here we present a transferable and scalable machine-learning model capable of predicting the total electron density directly from the atomic coordinates. The regression model is used to access qualitative and quantitative insights beyond the underlying \u03c1(r) in a diverse ensemble of sidechain\u2013sidechain dimers extracted from the BioFragment database (BFDb). The transferability of the model to more complex chemical systems is demonstrated by predicting and analyzing the electron density of a collection of 8 polypeptides.",
"version": 1,
"contributors": [
{
"affiliations": [
"Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015 Lausanne, Switzerland "
],
"familyname": "Fabrizio",
"givennames": "Alberto"
},
{
"affiliations": [
"Laboratory of Computational Science and Modeling, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015 Lausanne, Switzerland"
],
"familyname": "Grisafi",
"givennames": "Andrea"
},
{
"affiliations": [
"Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015 Lausanne, Switzerland "
],
"familyname": "Meyer",
"givennames": "Benjamin"
},
{
"affiliations": [
"Laboratory of Computational Science and Modeling, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015 Lausanne, Switzerland"
],
"familyname": "Ceriotti",
"givennames": "Michele"
},
{
"email": "clemence.corminboeuf@epfl.ch",
"affiliations": [
"Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015 Lausanne, Switzerland "
],
"familyname": "Corminboeuf",
"givennames": "Clemence"
}
],
"edited_by": 98
},
"updated": "2019-10-28T00:00:00+00:00"
}