Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal
JSON Export
{
"revision": 1,
"id": "249",
"created": "2020-05-12T13:53:23.600616+00:00",
"metadata": {
"doi": "10.24435/materialscloud:2019.0074/v1",
"status": "published",
"title": "Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal",
"mcid": "2019.0074/v1",
"license_addendum": "",
"_files": [
{
"description": "This file contains a brief description(readme) and input data necessary to reproduce fig4 (the numerical simulation part) in the manuscript.\r\n",
"key": "data.tar.gz",
"size": 2072461,
"checksum": "md5:baffa34da2869430481ac41ecf9692c1"
},
{
"description": "a brief description(readme) for the data",
"key": "readme",
"size": 545,
"checksum": "md5:56a26b473eb7eb8995f876a2777ec276"
}
],
"owner": 30,
"_oai": {
"id": "oai:materialscloud.org:249"
},
"keywords": [
"MARVEL",
"WannierTools",
"magnetoresistance",
"Boltzmann transport theory",
"first principles",
"Fermi surface"
],
"conceptrecid": "248",
"is_last": true,
"references": [
{
"type": "Journal reference",
"doi": "10.1103/PhysRevB.100.085137",
"url": "",
"comment": "Paper in which the data is discussed",
"citation": "M. Novak , S. N. Zhang, F. Orbanic \u0301, N. Bili\u0161kov, G. Eguchi, S. Paschen, A. Kimura, X. X. Wang, T. Osada, K. Uchida, M. Sato, Q. S. Wu, O. V. Yazyev, and I. Kokanovic, PHYSICAL REVIEW B 100.085137 (2019)."
}
],
"publication_date": "Oct 29, 2019, 00:00:00",
"license": "Creative Commons Attribution 4.0 International",
"id": "249",
"description": "In this work, we investigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. Combining the Fermi surfaces calculated from first principles with the Boltzmann\u2019s semiclassical transport theory, we reproduce all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR.We can conclude that the dominant contribution the cusplike AMR lies in open orbits of the hole pocket and, in general, AMR is strongly influenced by charge compensation effect and the off-diagonal conductivity tensor elements, which give rise to peculiar butterfly-shaped AMR.\r\n",
"version": 1,
"contributors": [
{
"email": "shengnan.zhang@epfl.ch",
"affiliations": [
"Institute of Physics, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Zhang",
"givennames": "Shengnan"
},
{
"email": "quansheng.wu@epfl.ch",
"affiliations": [
"Institute of Physics, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Wu",
"givennames": "Quansheng"
},
{
"email": "oleg.yazyev@epfl.ch",
"affiliations": [
"Institute of Physics, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Yazyev",
"givennames": "Oleg V."
}
],
"edited_by": 98
},
"updated": "2019-10-29T00:00:00+00:00"
}