Charting the landscape of Bardeen-Cooper-Schrieffer superconductors in experimentally known compounds
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
<dc:creator>Bercx, Marnik</dc:creator>
<dc:creator>Poncé, Samuel</dc:creator>
<dc:creator>Zhang, Yiming</dc:creator>
<dc:creator>Trezza, Giovanni</dc:creator>
<dc:creator>Ghorbani Ghezeljehmeidan, Amir</dc:creator>
<dc:creator>Bastonero, Lorenzo</dc:creator>
<dc:creator>Qiao, Junfeng</dc:creator>
<dc:creator>von Rohr, Fabian O.</dc:creator>
<dc:creator>Pizzi, Giovanni</dc:creator>
<dc:creator>Chiavazzo, Eliodoro</dc:creator>
<dc:creator>Marzari, Nicola</dc:creator>
<dc:date>2025-03-13</dc:date>
<dc:description>We perform a high-throughput computational search for novel phonon-mediated superconductors, starting from the Materials Cloud 3-dimensional database (MC3D) of experimentally known inorganic stoichiometric compounds. We first compute the Allen-Dynes critical temperature Tc for 4533 non-magnetic metals using a direct and progressively finer sampling of the electron-phonon couplings. For the candidates with the largest Tc, we use automated Wannierizations and electron-phonon interpolations to obtain a high-quality dataset for the most promising 240 dynamically stable structures, for which we calculate spectral functions, superconducting bandgaps, and isotropic Migdal-Eliashberg critical temperatures. For 110 of these, we also provide anisotropic Migdal-Eliashberg superconducting gaps and critical temperatures. The approach is remarkably successful in finding known superconductors, and we find 24 unknown ones with a predicted anisotropic Tc above 10 K. Among them, we identify a possible double gap superconductor (p-doped BaB2), a non-magnetic half-Heusler ZrRuSb, and the perovskite TaRu3C, all exhibiting significant Tc. Finally, we introduce a sensitivity analysis to estimate the robustness of the predictions.</dc:description>
<dc:identifier>https://archive.materialscloud.org/record/2025.39</dc:identifier>
<dc:identifier>doi:10.24435/materialscloud:c8-gs</dc:identifier>
<dc:identifier>mcid:2025.39</dc:identifier>
<dc:identifier>oai:materialscloud.org:2593</dc:identifier>
<dc:language>en</dc:language>
<dc:publisher>Materials Cloud</dc:publisher>
<dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
<dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
<dc:subject>superconductivity</dc:subject>
<dc:subject>high-throughput</dc:subject>
<dc:subject>electron-phonon coupling</dc:subject>
<dc:subject>Migdal-Eliashberg</dc:subject>
<dc:subject>first-principles</dc:subject>
<dc:title>Charting the landscape of Bardeen-Cooper-Schrieffer superconductors in experimentally known compounds</dc:title>
<dc:type>Dataset</dc:type>
</oai_dc:dc>