<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Acharya, Debdipto</dc:creator> <dc:creator>Abou El Kheir, Omar</dc:creator> <dc:creator>Marcorini, Simone</dc:creator> <dc:creator>Bernasconi, Marco</dc:creator> <dc:date>2025-05-23</dc:date> <dc:description>Phase change materials are the most promising candidates for the realization of artificial synapsis for neuromorphic computing. Different resistance levels corresponding to analogic values of the synapsis conductance can be achieved by modulating the size of an amorphous region embedded in its crystalline matrix. Recently, it has been proposed that a superlattice made of alternating layers of the phase change compound Sb₂Te₃ and of the TiTe₂ confining material allows for a better control of multiple intermediate resistance states and for a lower drift with time of the electrical resistance of the amorphous phase. In this work, we consider to substitute Sb₂Te₃ with the Ge₂Sb₂Te₅ prototypical phase change compound that should feature better data retention. By exploiting molecular dynamics simulations with a machine learning interatomic potential, we have investigated the crystallization kinetics of Ge₂Sb₂Te₅ nanoconfined in geometries mimicking Ge₂Sb₂Te₅/TiTe₂ superlattices. It turns out that nanoconfinement induces a slight reduction in the crystal growth velocities with respect to the bulk, but also an enhancement of the nucleation rate due to heterogeneous nucleation. The results support the idea of investigating Ge₂Sb₂Te₅/TiTe₂ superlattices for applications in neuromorphic devices with improved data retention. The effect on the crystallization kinetics of the addition of van der Waals interaction to the interatomic potential is also discussed.</dc:description> <dc:identifier>https://archive.materialscloud.org/record/2025.80</dc:identifier> <dc:identifier>doi:10.24435/materialscloud:t4-kf</dc:identifier> <dc:identifier>mcid:2025.80</dc:identifier> <dc:identifier>oai:materialscloud.org:2689</dc:identifier> <dc:language>en</dc:language> <dc:publisher>Materials Cloud</dc:publisher> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>molecular dynamics simulation</dc:subject> <dc:subject>Neural Network Potential</dc:subject> <dc:subject>Crystallization</dc:subject> <dc:subject>Phase Change Materials</dc:subject> <dc:subject>Neuromophic Computing</dc:subject> <dc:title>Simulation of the crystallization process of Ge₂Sb₂Te₅ nanoconfined in superlattice geometries for phase change memories</dc:title> <dc:type>Dataset</dc:type> </oai_dc:dc>