Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites


JSON Export

{
  "revision": 1, 
  "id": "294", 
  "created": "2020-05-12T13:53:36.426118+00:00", 
  "metadata": {
    "doi": "10.24435/materialscloud:2020.0003/v1", 
    "status": "published", 
    "title": "Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites", 
    "mcid": "2020.0003/v1", 
    "license_addendum": "", 
    "_files": [
      {
        "description": "Comment concerning DD-CAM calculation", 
        "key": "Readme_DDCAM_input.txt", 
        "size": 762, 
        "checksum": "md5:8523861f4671c9cffbe0569452501037"
      }, 
      {
        "description": "ABINIT input file for  DD-PBE0 calculation (hybrid calculation) on CsPbI3", 
        "key": "CsPbI3_DDPBE0_hybrid_calculation.in", 
        "size": 1093, 
        "checksum": "md5:c1670e5897b8126df5a498d06a83bce8"
      }, 
      {
        "description": "ABINIT input file for  QSGW calculation on CsPbI3", 
        "key": "CsPbI3_QSGW.in", 
        "size": 2297, 
        "checksum": "md5:f78111d2e288402238788ddecf3d1856"
      }, 
      {
        "description": "Comment concerning scripts for finite-size correction scheme", 
        "key": "Readme_scripts_finitesize_corrections.txt", 
        "size": 181, 
        "checksum": "md5:509eb98a71c92ab9f965e4fd4b9d391d"
      }, 
      {
        "description": "ABINIT input file for  DD-PBE0 calculation (epsilon calculation) on CsPbI3", 
        "key": "CsPbI3_DDPBE0_eps_calculation.in", 
        "size": 1216, 
        "checksum": "md5:469b25c913451db1ef25a8c7423774d9"
      }, 
      {
        "description": "Pseudopotentials (in upf and psp8 format)", 
        "key": "Pseudopotentials.zip", 
        "size": 1891183, 
        "checksum": "md5:036df92555f27b5b027f3c9b4df34449"
      }, 
      {
        "description": "List of lattice constants for the cubic phase", 
        "key": "lattice_constants.txt", 
        "size": 185, 
        "checksum": "md5:f85f1459702591f95586248a7d3e37bd"
      }, 
      {
        "description": "QE input file (and coordinates) for an iodine vacancy in CsPbI3", 
        "key": "CsPbI3_VI_neutral_alpha02.in", 
        "size": 2448, 
        "checksum": "md5:f2c217f3aa2b19937d58a42a086d338b"
      }
    ], 
    "owner": 8, 
    "_oai": {
      "id": "oai:materialscloud.org:294"
    }, 
    "keywords": [
      "EPFL", 
      "SNSF", 
      "band gaps", 
      "nonempirical hybrid functionals", 
      "perovskites"
    ], 
    "conceptrecid": "293", 
    "is_last": true, 
    "references": [
      {
        "type": "Journal reference", 
        "doi": "10.1103/PhysRevMaterials.3.123802", 
        "url": "https://link.aps.org/doi/10.1103/PhysRevMaterials.3.123802", 
        "comment": "", 
        "citation": "T. Bischoff, J. Wiktor, W. Chen, A. Pasquarello, Phys. Rev. Mater. 3, 123802 (2019)"
      }
    ], 
    "publication_date": "Jan 07, 2020, 00:00:00", 
    "license": "Creative Commons Attribution 4.0 International", 
    "id": "294", 
    "description": "Nonempirical hybrid functionals are investigated for band-gap predictions of inorganic metal-halide perovskites belonging to the class CsBX3 , with B = Ge, Sn, Pb and X = Cl, Br, I. We consider both global and range-separated hybrid functionals and determine the parameters through two different schemes. The first scheme is based on the static screening response of the material and thus yields dielectric-dependent hybrid functionals. The second scheme defines the hybrid functionals through the enforcement of Koopmans\u2019 condition for localized defect states. We also carry out quasiparticle self-consistent GW calculations with vertex corrections to establish state-of-the-art references. For the investigated class of materials, dielectric-dependent functionals and those fulfilling Koopmans\u2019 condition yield band gaps of comparable accuracy (\u223c0.2 eV), but the former only require calculations for the primitive unit cell and are less subject to the specifics of the material.", 
    "version": 1, 
    "contributors": [
      {
        "email": "thomas.bischoff@epfl.ch", 
        "affiliations": [
          "Chaire de Simulation \u00e0 l'Echelle Atomique (CSEA), \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
        ], 
        "familyname": "Bischoff", 
        "givennames": "Thomas"
      }, 
      {
        "email": "julia.wiktor@chalmers.se", 
        "affiliations": [
          "Department of Physics, Chalmers University of Technology, SE-412 96 Gothenberg, Sweden"
        ], 
        "familyname": "Wiktor", 
        "givennames": "Julia"
      }, 
      {
        "email": "wei.chen@uclouvain.be", 
        "affiliations": [
          "Institute of Condensed Matter and Nanoscience (IMCN), Universit\u00e9 catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium"
        ], 
        "familyname": "Chen", 
        "givennames": "Wei"
      }, 
      {
        "email": "alfredo.pasquarello@epfl.ch", 
        "affiliations": [
          "Chaire de Simulation \u00e0 l'Echelle Atomique (CSEA), \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
        ], 
        "familyname": "Pasquarello", 
        "givennames": "Alfredo"
      }
    ], 
    "edited_by": 98
  }, 
  "updated": "2020-01-07T00:00:00+00:00"
}