Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation
JSON Export
{
"revision": 2,
"id": "302",
"created": "2020-05-12T13:53:38.914095+00:00",
"metadata": {
"doi": "10.24435/materialscloud:2020.0007/v1",
"status": "published",
"title": "Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation",
"mcid": "2020.0007/v1",
"license_addendum": "",
"_files": [
{
"description": "Input/output files for the calculations.",
"key": "hydroformylation_archive_v1.zip",
"size": 36539634,
"checksum": "md5:1eca0baf9ea8c4bd0b8b5ac25bcfd669"
},
{
"description": "Description of the zip content.",
"key": "README.txt",
"size": 566,
"checksum": "md5:333c26291477149fd99ac93ed9aefe95"
}
],
"owner": 69,
"_oai": {
"id": "oai:materialscloud.org:302"
},
"keywords": [
"MARVEL",
"metal-organic frameworks",
"MOF",
"catalysis"
],
"conceptrecid": "301",
"is_last": true,
"references": [
{
"type": "Journal reference",
"doi": "10.1038/s41467-020-14828-6",
"url": "",
"comment": "Paper in which the data is discussed",
"citation": "G. Bauer, D. Ongari, D. Tiana, P. G\u00e4umann, T. Rohrbach, G. Pareras, M. Tarik, B. Smit, M. Ranocchiari, Nature Communications 11, 1059 (2020)"
}
],
"publication_date": "Jan 16, 2020, 00:00:00",
"license": "Creative Commons Attribution 4.0 International",
"id": "302",
"description": "Finding heterogeneous catalysts that are superior to homogeneous ones for selective organic transformation is a major challenge in catalysis. Here we show how micropores in metal-organic frameworks (MOFs) push homogeneous catalytic reactions into kinetic regimes inaccessible under standard conditions. Such property allows branched selectivity up to 90% in the Co-catalysed hydroformylation of olefins without directing groups, not achievable with existing catalysts. This finding has a big potential in the production of aldehydes for the fine chemical industry. Monte Carlo and density functional theory simulations combined with kinetic models show that the micropores of MOFs with UMCM-1 and MOF-74 topologies increase the olefins density beyond neat conditions while partially preventing the adsorption of syngas leading to high branched selectivity. The easy experimental protocol and the chemical and structural flexibility of MOFs will attract the interest of the fine chemical industries towards the design of heterogeneous processes with exceptional selectivity.",
"version": 1,
"contributors": [
{
"affiliations": [
"Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland"
],
"familyname": "Bauer",
"givennames": "Gerald"
},
{
"email": "daniele.ongari@epfl.ch",
"affiliations": [
"Laboratory of Molecular Simulation, EPFL Valais/Wallis, CH-1951 Sion, Switzerland"
],
"familyname": "Ongari",
"givennames": "Daniele"
},
{
"affiliations": [
"School of Chemistry, University College Cork, College Rd, Cork, Ireland"
],
"familyname": "Tiana",
"givennames": "Davide"
},
{
"affiliations": [
"Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland"
],
"familyname": "G\u00e4umann",
"givennames": "Patrick"
},
{
"affiliations": [
"Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland"
],
"familyname": "Rohrbach",
"givennames": "Thomas"
},
{
"affiliations": [
"School of Chemistry, University College Cork, College Rd, Cork, Ireland"
],
"familyname": "Pareras",
"givennames": "Gerard"
},
{
"affiliations": [
"Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, CH-5232 Villigen PSI"
],
"familyname": "Tarik",
"givennames": "Mohamed"
},
{
"affiliations": [
"Laboratory of Molecular Simulation, EPFL Valais/Wallis, CH-1951 Sion, Switzerland"
],
"familyname": "Smit",
"givennames": "Berend"
},
{
"affiliations": [
"Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland"
],
"familyname": "Ranocchiari",
"givennames": "Marco"
}
],
"edited_by": 69
},
"updated": "2021-01-14T11:27:02.070212+00:00"
}