Hamiltonian-Reservoir Replica Exchange and Machine Learning Potentials for Computational Organic Chemistry
JSON Export
{
"revision": 2,
"id": "355",
"created": "2020-05-12T13:53:52.302024+00:00",
"metadata": {
"doi": "10.24435/materialscloud:2020.0033/v1",
"status": "published",
"title": "Hamiltonian-Reservoir Replica Exchange and Machine Learning Potentials for Computational Organic Chemistry",
"mcid": "2020.0033/v1",
"license_addendum": "",
"_files": [
{
"description": "Tar ball containing structures and energies (for a more detailed description of the content see README.txt)",
"key": "resHRE_paper_data.tar.gz",
"size": 266499589,
"checksum": "md5:53a73a81a57b8d1af2cb7507db7a079c"
},
{
"description": "Details of the content of the resHRE_paper_data.tar.gz file",
"key": "README.txt",
"size": 2444,
"checksum": "md5:3cb075e0b761009d27c6ac13e38e3cd9"
}
],
"owner": 22,
"_oai": {
"id": "oai:materialscloud.org:355"
},
"keywords": [
"EPFL",
"MARVEL/DD1",
"Machine Learning",
"Accelerated Sampling",
"ERC",
"Hamiltonian Replica Exchange"
],
"conceptrecid": "354",
"is_last": true,
"references": [
{
"type": "Journal reference",
"doi": "10.1021/acs.jctc.0c00100",
"url": "https://pubs.acs.org/doi/10.1021/acs.jctc.0c00100",
"citation": "R. Fabregat, A. Fabrizio, B. Meyer, D. Hollas, C. Corminboeuf, J. Chem. Theory Comput., 16, 3084-3094 (2020)"
},
{
"type": "Software",
"doi": "10.5281/zenodo.3630553",
"url": "https://zenodo.org/record/3630553",
"comment": "MORESIM software as described in the paper.",
"citation": "R. Fabregat, A. Fabrizio, B. Meyer, D. Hollas, C. Corminboeuf, MORESIM (Version v1.1). Zenodo"
}
],
"publication_date": "Apr 02, 2020, 00:00:00",
"license": "Creative Commons Attribution 4.0 International",
"id": "355",
"description": "This work combines a machine learning potential energy function with a modular enhanced sampling scheme to obtain statistically converged thermodynamical properties of flexible medium size organic molecules at high ab initio level. We offer a modular environment in the python package MORESIM that allows custom design of replica exchange simulations with any level of theory including ML-based potentials. Our specific combination of Hamiltonian and reservoir replica exchange is shown to be a powerful technique to accelerate enhanced sampling simulations and explore free energy landscapes with a quantum chemical accuracy unattainable otherwise (e.g., DLPNO-CCSD(T)/CBS quality). This engine is used to demonstrate the relevance of accessing the ab initio free energy landscapes of molecules whose stability is determined by a subtle interplay between variations in the underlying potential energy and conformational entropy (i.e., a bridged asymmetrically polarized dithiacyclophane and a widely used organocatalyst) both in the gas phase and in solution (implicit solvent).",
"version": 1,
"contributors": [
{
"affiliations": [
"Institut des Sciences et Ing\u00e9nierie Chimiques, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Fabregat",
"givennames": "Raimon"
},
{
"affiliations": [
"Institut des Sciences et Ing\u00e9nierie Chimiques, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Fabrizio",
"givennames": "Alberto"
},
{
"affiliations": [
"Institut des Sciences et Ing\u00e9nierie Chimiques, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Meyer",
"givennames": "Benjamin"
},
{
"affiliations": [
"Institut des Sciences et Ing\u00e9nierie Chimiques, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Hollas",
"givennames": "Daniel"
},
{
"email": "clemence.corminbouef@epfl.ch",
"affiliations": [
"Institut des Sciences et Ing\u00e9nierie Chimiques, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
],
"familyname": "Corminboeuf",
"givennames": "Cl\u00e9mence"
}
],
"edited_by": 22
},
"updated": "2020-09-10T13:59:08.408446+00:00"
}