Toward GW Calculations on Thousands of Atoms


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Wilhelm, Jan</dc:creator>
  <dc:creator>Golze, Dorothea</dc:creator>
  <dc:creator>Talirz, Leopold</dc:creator>
  <dc:creator>Hutter, Jürg</dc:creator>
  <dc:creator>Pignedoli, Carlo Antonio</dc:creator>
  <dc:date>2018-09-28</dc:date>
  <dc:description>We provide the input files needed to reproduce the results of the article&#13;
&#13;
Toward GW Calculations on Thousands of Atoms&#13;
J. Wilhelm, D. Golze, L. Talirz, J. Hutter, C. A. Pignedoli&#13;
J. Phys. Chem. Lett.  9, 306–312 (2018) DOI:10.1021/acs.jpclett.7b02740&#13;
&#13;
The GW approximation of many-body perturbation theory is an accurate method&#13;
for computing electron addition and removal energies of molecules and solids.&#13;
In a canonical implementation, however, its computational cost is  in the&#13;
system size N, which prohibits its application to many systems of interest.&#13;
We present a full-frequency GW algorithm in a Gaussian-type basis,&#13;
whose computational cost scales with N2 to N3.&#13;
The implementation is optimized for massively parallel execution on&#13;
state-of-the-art supercomputers and is suitable for nanostructures and molecules in the gas,&#13;
liquid or condensed phase, using either pseudopotentials or all electrons.&#13;
We validate the accuracy of the algorithm on the GW100 molecular test set,&#13;
finding mean absolute deviations of 35 meV for ionization potentials and 27 meV&#13;
for electron affinities. Furthermore, we study the length-dependence of quasiparticle&#13;
energies in armchair graphene nanoribbons of up to 1734 atoms in size, and compute the&#13;
local density of states across a nanoscale heterojunction.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2018.0015/v1</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:2018.0015/v1</dc:identifier>
  <dc:identifier>mcid:2018.0015/v1</dc:identifier>
  <dc:identifier>oai:materialscloud.org:58</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>DFT</dc:subject>
  <dc:subject>MARVEL</dc:subject>
  <dc:subject>GW</dc:subject>
  <dc:subject>abinitio</dc:subject>
  <dc:subject>graphene</dc:subject>
  <dc:subject>nanoribbon</dc:subject>
  <dc:subject>scaling</dc:subject>
  <dc:subject>high performance computing</dc:subject>
  <dc:subject>CP2K</dc:subject>
  <dc:title>Toward GW Calculations on Thousands of Atoms</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>