Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Timrov, Iurii</dc:creator>
  <dc:creator>Marzari, Nicola</dc:creator>
  <dc:creator>Cococcioni, Matteo</dc:creator>
  <dc:date>2020-11-09</dc:date>
  <dc:description>The self-consistent evaluation of Hubbard parameters using linear-response theory is crucial for quantitatively predictive calculations based on Hubbard-corrected density-functional theory. Here, we extend a recently-introduced approach based on density-functional perturbation theory (DFPT) for the calculation of the on-site Hubbard U to also compute the inter-site Hubbard V. DFPT allows to reduce significantly computational costs, improve numerical accuracy, and fully automate the calculation of the Hubbard parameters by recasting the linear response of a localized perturbation into an array of monochromatic perturbations that can be calculated in the primitive cell. In addition, here we generalize the entire formalism from norm-conserving to ultrasoft and projector-augmented wave formulations, and to metallic ground states. After benchmarking DFPT against the conventional real-space Hubbard linear response in a supercell, we demonstrate the effectiveness of the present extended Hubbard formulation in determining the equilibrium crystal structure of LiₓMnPO₄ (x=0,1) and the subtle energetics of Li intercalation.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2020.143</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:vp-wm</dc:identifier>
  <dc:identifier>mcid:2020.143</dc:identifier>
  <dc:identifier>oai:materialscloud.org:635</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Density-functional perturbation theory</dc:subject>
  <dc:subject>Hubbard-corrected density-functional theory</dc:subject>
  <dc:subject>extended Hubbard functionals</dc:subject>
  <dc:subject>self-interaction corrections</dc:subject>
  <dc:subject>Hubbard on-site U and inter-site V parameters</dc:subject>
  <dc:subject>CSCS</dc:subject>
  <dc:subject>MARVEL</dc:subject>
  <dc:subject>ultrasoft pseudopotentials</dc:subject>
  <dc:subject>projector-augmented wave method</dc:subject>
  <dc:subject>Li-ion batteries</dc:subject>
  <dc:subject>voltages</dc:subject>
  <dc:subject>LiMnPO4</dc:subject>
  <dc:subject>MnPO4</dc:subject>
  <dc:subject>linear-response theory</dc:subject>
  <dc:subject>monochromatic perturbations</dc:subject>
  <dc:title>Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>