Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Čerņevičs, Kristiāns</dc:creator>
  <dc:creator>Yazyev, Oleg V.</dc:creator>
  <dc:creator>Pizzochero, Michele</dc:creator>
  <dc:date>2020-12-04</dc:date>
  <dc:description>The success of all-graphene electronics is severely hindered by the challenging realization and subsequent integration of semiconducting channels and metallic contacts. Here, we comprehensively investigate the electronic transport across width-modulated heterojunctions consisting of a graphene quantum dot of varying lengths and widths embedded in a pair of armchair-edged metallic nanoribbons, of the kind recently fabricated via on-surface synthesis. We show that the presence of the quantum dot enables the opening of a width-dependent transport gap, thereby yielding built-in one-dimensional metal-semiconductor-metal junctions. Furthermore, we find that, in the vicinity of the band edges, the conductance is subject to a smooth transition from an antiresonant to a resonant transport regime upon increasing the channel length. These results are rationalized in terms of a competition between quantum-confinement effects and quantum dot-to-lead coupling. Overall, our work establishes graphene quantum dot nanoarchitectures as appealing platforms to seamlessly integrate gap-tunable semiconducting channels and metallic contacts into an individual nanoribbon, hence realizing self-contained carbon-based electronic devices.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2020.159</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:cd-gr</dc:identifier>
  <dc:identifier>mcid:2020.159</dc:identifier>
  <dc:identifier>oai:materialscloud.org:657</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>GNR</dc:subject>
  <dc:subject>Graphene</dc:subject>
  <dc:subject>Nanoribbon</dc:subject>
  <dc:subject>Quantum dot</dc:subject>
  <dc:subject>Electronic transport</dc:subject>
  <dc:subject>SNSF</dc:subject>
  <dc:subject>MARVEL</dc:subject>
  <dc:subject>CSCS</dc:subject>
  <dc:title>Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>