Ab initio electronic structure of liquid water: Molecular dynamics snapshots


JSON Export

{
  "revision": 1, 
  "id": "78", 
  "created": "2020-05-12T13:52:26.085756+00:00", 
  "metadata": {
    "doi": "10.24435/materialscloud:2018.0023/v1", 
    "status": "published", 
    "title": "Ab initio electronic structure of liquid water: Molecular dynamics snapshots", 
    "mcid": "2018.0023/v1", 
    "license_addendum": "", 
    "_files": [
      {
        "description": "The archive includes a xyz file containing 20 snapshots of 32 water molecules generated at 300 K with path-integral molecular dynamics using only 1 bead, hence classical water.  The time interval between the snapshots is 0.4 ps. The b parameter in the rVV10 functional is 8.9.", 
        "key": "water_cls.tar.gz", 
        "size": 28908, 
        "checksum": "md5:78067281309d7b4dea40a6ae3f702cd3"
      }, 
      {
        "description": "The archive compiles a series of snapshots of 32 water molecules generated at 300 K with path-integral molecular dynamics. Each xyz file corresponds to one bead, hence 6 beads in total.  The time interval between the snapshots is 0.4 ps. The b parameter in the rVV10 functional is 8.9.", 
        "key": "water_nqe.tar.gz", 
        "size": 167256, 
        "checksum": "md5:ba486dd7d1579732a4d9b1d5c2851ee1"
      }
    ], 
    "owner": 75, 
    "_oai": {
      "id": "oai:materialscloud.org:78"
    }, 
    "keywords": [
      "liquid water", 
      "nuclear quantum effect"
    ], 
    "conceptrecid": "77", 
    "is_last": true, 
    "references": [
      {
        "type": "Journal reference", 
        "doi": "10.1103/PhysRevLett.117.186401", 
        "url": "", 
        "comment": "", 
        "citation": "W. Chen, F. Ambrosio, G. Miceli, and A. Pasquarello"
      }
    ], 
    "publication_date": "Dec 10, 2018, 00:00:00", 
    "license": "Creative Commons Attribution 4.0 International", 
    "id": "78", 
    "description": "This entry provides the snapshots of liquid water generated with ab initio molecular dynamics using rVV10 density functional at room temperature. Nuclear quantum effects are taken into account through path-integral molecular dynamics simulations. ", 
    "version": 1, 
    "contributors": [
      {
        "email": "wei.chen@epfl.ch", 
        "affiliations": [
          "Chaire de Simulation \u00e0 l\u2019Echelle Atomique (CSEA), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
        ], 
        "familyname": "Chen", 
        "givennames": "Wei"
      }, 
      {
        "affiliations": [
          "Chaire de Simulation \u00e0 l\u2019Echelle Atomique (CSEA), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
        ], 
        "familyname": "Ambrosio", 
        "givennames": "Francesco"
      }, 
      {
        "affiliations": [
          "Chaire de Simulation \u00e0 l\u2019Echelle Atomique (CSEA), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
        ], 
        "familyname": "Miceli", 
        "givennames": "Giacomo"
      }, 
      {
        "email": "alfredo.pasquarello@epfl.ch", 
        "affiliations": [
          "Chaire de Simulation \u00e0 l\u2019Echelle Atomique (CSEA), Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland"
        ], 
        "familyname": "Pasquarello", 
        "givennames": "Alfredo"
      }
    ], 
    "edited_by": 98
  }, 
  "updated": "2018-12-10T00:00:00+00:00"
}