Importance of intersite Hubbard interactions in β-MnO2: A first-principles DFT+U+V study


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Mahajan, Ruchika</dc:creator>
  <dc:creator>Timrov, Iurii</dc:creator>
  <dc:creator>Marzari, Nicola</dc:creator>
  <dc:creator>Kashyap, Arti</dc:creator>
  <dc:date>2021-07-16</dc:date>
  <dc:description>We present a first-principles investigation of the structural, electronic, and magnetic properties of pyrolusite (β-MnO2) using conventional and extended Hubbard-corrected density-functional theory (DFT+U and DFT+U+V). The onsite U and intersite V Hubbard parameters are computed using linear-response theory in the framework of density-functional perturbation theory. We show that while the inclusion of the onsite U is crucial to describe the localized nature of the Mn(3d) states, the intersite V is key to capture accurately the strong hybridization between neighboring Mn(3d) and O(2p) states. In this framework, we stabilize the simplified collinear antiferromagnetic (AFM) ordering (suggested by the Goodenough-Kanamori rule) that is commonly used as an approximation to the experimentally-observed noncollinear screw-type spiral magnetic ordering. A detailed investigation of the ferromagnetic and of other three collinear AFM spin configurations is also presented. The findings from Hubbard-corrected DFT are discussed using two kinds of Hubbard manifolds -- nonorthogonalized and orthogonalized atomic orbitals -- showing that special attention must be given to the choice of the Hubbard projectors, with orthogonalized manifolds providing more accurate results than nonorthogonalized ones within DFT+U+V. This work paves the way for future studies of complex transition-metal compounds containing strongly localized electrons in the presence of pronounced covalent interactions.</dc:description>
  <dc:identifier>https://archive.materialscloud.org/record/2021.109</dc:identifier>
  <dc:identifier>doi:10.24435/materialscloud:bf-cz</dc:identifier>
  <dc:identifier>mcid:2021.109</dc:identifier>
  <dc:identifier>oai:materialscloud.org:938</dc:identifier>
  <dc:language>en</dc:language>
  <dc:publisher>Materials Cloud</dc:publisher>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>MnO2</dc:subject>
  <dc:subject>DFT+U</dc:subject>
  <dc:subject>DFT+U+V</dc:subject>
  <dc:subject>crystal structure</dc:subject>
  <dc:subject>density of states</dc:subject>
  <dc:subject>density-functional theory</dc:subject>
  <dc:subject>Hubbard parameters</dc:subject>
  <dc:subject>CSCS</dc:subject>
  <dc:subject>MARVEL/OSP</dc:subject>
  <dc:subject>SNSF</dc:subject>
  <dc:subject>self-interactions</dc:subject>
  <dc:subject>magnetic moment</dc:subject>
  <dc:subject>band gap</dc:subject>
  <dc:subject>spin configuration</dc:subject>
  <dc:subject>Goodenough-Kanamori rule</dc:subject>
  <dc:subject>Hubbard projectors</dc:subject>
  <dc:subject>orthogonalized atomic orbitals</dc:subject>
  <dc:subject>nonorthogonalized atomic orbitals</dc:subject>
  <dc:title>Importance of intersite Hubbard interactions in β-MnO2: A first-principles DFT+U+V study</dc:title>
  <dc:type>Dataset</dc:type>
</oai_dc:dc>