×

Recommended by

Indexed by

Latest records

Common workflows for computing material properties using different quantum engines

DOI10.24435/materialscloud:nz-01

Sebastiaan P. Huber, Emanuele Bosoni, Marnik Bercx, Jens Bröder, Augustin Degomme, Vladimir Dikan, Kristjan Eimre, Espen Flage-Larsen, Alberto Garcia, Luigi Genovese, Dominik Gresch, Conrad Johnston, Guido Petretto, Samuel Poncé, Gian-Marco Rignanese, Christopher J. Sewell, Berend Smit, Vasily Tseplyaev, Martin Uhrin, Daniel Wortmann, Aliaksandr V. Yakutovich, Austin Zadoks, Pezhman Zarabadi-Poor, Bonan Zhu, Nicola Marzari, Giovanni Pizzi

  • The prediction of material properties through electronic-structure simulations based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods aiming to solve similar problems is both a boon and a burden. While providing great opportunities for cross-verification, these packages adopt different methods, algorithms, and paradigms, making it challenging to choose, master, and efficiently use any one for a given task. Leveraging recent advances in managing reproducible scientific workflows, we demonstrate how developing common interfaces for workflows that automatically compute material properties can tackle the challenge mentioned above, greatly simplifying interoperability and cross-verification. We introduce design rules for reproducible and reusable code-agnostic workflow interfaces to compute well-defined material properties, which we ...

Latest version: v1
Publication date: May 11, 2021


Global free-energy landscapes as a smoothly joined collection of local maps

DOI10.24435/materialscloud:py-h3

Federico Giberti, Gareth Tribello, Michele Ceriotti

  • This repository contains the scripts that were used to run the calculations that present a new biasing technique, the Adaptive Topography of Landscape for Accelerated Sampling (ATLAS). The techinque is implemented in plumed-2.0 and the input file are included in the repository, as well as a few scripts to postprocess the calculations and reproduce the plots presented in the paper

Latest version: v1
Publication date: May 08, 2021


Carrier lifetimes and polaronic mass enhancement in the hybrid halide perovskite CH₃NH₃PbI₃ from multiphonon Fröhlich coupling

DOI10.24435/materialscloud:wg-d5

Martin Schlipf, Samuel Poncé, Feliciano Giustino

  • We elucidate the nature of the electron-phonon interaction in the archetypal hybrid perovskite CH₃NH₃PbI₃ using ab initio many-body calculations and an exactly solvable model. We demonstrate that electrons and holes near the band edges primarily interact with three distinct groups of longitudinal-optical vibrations, in order of importance: the stretching of the Pb-I bond, the bending of the Pb-I-Pb bonds, and the libration of the organic cations. These polar phonons induce ultrafast intraband carrier relaxation over timescales of 6–30 fs and yield polaron effective masses 28% heavier than the bare band masses. These findings allow us to rationalize previous experimental observations and provide a key to understanding carrier dynamics in halide perovskites.

Latest version: v1
Publication date: May 07, 2021


Plasmon energy changes in FeMo14C15B6Erx (x=0-2) bulk metallic glass during in-situ heating

DOI10.24435/materialscloud:q5-tn

Sengo Kobayashi, James Howe, Mitsuhiro Murayama

  • Variations of volume plasmon energy of both ribbon and bulk FeMo14C15B6Erx (x=0-2) metallic glasses were measured as a function of the temperature in an analytical transmission electron microscope using valence electron energy loss spectroscopy (VEELS). The plasmon energy was found to decrease with increasing temperature, due not only to thermal expansion but also to chemical reordering in the glasses. The chemical reordering stimulates a specific solute cluster formation; M23(C, B)6 solute clusters began to form above about 200°C in both ribbon and bulk FeMo14C15B6Erx (x=0, 0.5, 1) metallic glasses. The formation of the M23(C, B)6 solute clusters was only found above 400°C in the ribbon FeMo14C15B6Er2 metallic glass, indicating inhibition of the M23(C, B)6 solute clusters occurred owing to the formation of Er-(C, B) complexes/clusters. The Er-(C, B) complexes/clusters were formed in the cooling process of the sample fabrication. In contrast to the ribbon sample, the formation of ...

Latest version: v1
Publication date: May 06, 2021


On-the-fly assessment of diffusion barriers of disordered transition metal oxyfluorides using local descriptors

DOI10.24435/materialscloud:9v-3q

Jin Hyun Chang, Peter Bjørn Jørgensen, Simon Loftager, Arghya Bhowmik, Juan María García Lastra, Tejs Vegge

  • The dataset contains the result of 48 Nudged Elastic Band calculations of Li(2-x)VO2F diffusion barriers in the format of Atomic Simulation Environment (ASE) trajectories. The NEB was performed with VASP, using projector augmented-wave (PAW) method to describe electron-ion interaction. The disordered rock salt cells were created using a 3 x 4 x 4 supercell containing 96 atoms (in case of no vacancies). PBE is used as XC functional while a rotationally invariant Hubbard U correction was applied to the d orbital of V with a U value of 3.25 eV. See more details in the paper.

Latest version: v1
Publication date: May 03, 2021


Finding new crystalline compounds using chemical similarity

DOI10.24435/materialscloud:96-09

Hai-Chen Wang, Silvana Botti, Miguel A. L. Marques

  • We proposed an efficient high-throughput scheme for the discovery of new stable crystalline phases. Our approach was based on the transmutation of known compounds, through the substitution of atoms in the crystal structure with chemically similar ones. The concept of similarity is defined quantitatively using a measure of chemical replaceability, extracted by data mining experimental databases. In this way we build more than 250k possible crystal phases, with almost 20k that are on the convex hull of stability. This dataset contains the optimized structure and the energy of these 250k materials calculated with the PBE approximation, in a format that is convenient for data-mining or for machine-learning applications.

Latest version: v1
Publication date: May 03, 2021


Designing crystallization to tune the performance of phase-change memory: rules of hierarchical melt and coordinate bond

DOI10.24435/materialscloud:cs-2a

Jin Zhao, Wen-Xiong Song, Tianjiao Xin, Zhitang Song

  • While alloy design has practically shown an efficient strategy to mediate two seemingly conflicted performances of writing speed and data retention in phase-change memory, the detailed kinetic pathway of alloy-tuned crystallization is still unclear. Here, we propose hierarchical melt and coordinate bond strategies to solve them, where the former stabilizes a medium-range crystal-like region and the latter provides a rule to stabilize amorphous. The Er0.52Sb2Te3 compound we designed achieves writing speed of 3.2 ns and ten-year data retention of 161 °C. We provide a direct atomic-level evidence that two neighbor Er atoms stabilize a medium-range crystal-like region, acting as a precursor to accelerate crystallization; meanwhile, the essential reason of stabilization originates from the formation of coordinate bonds by sharing lone-pair electrons of chalcogenide atoms with the empty 5d orbitals of Er atoms. The two rules pave the way for the development of storage-class memory with ...

Latest version: v1
Publication date: Apr 29, 2021


Band gap engineering in blended organic semiconductor films based on dielectric interactions

DOI10.24435/materialscloud:g3-cp

Katrin Ortstein, Sebastian Hutsch, Mike Hambsch, Kristofer Tvingstedt, Berthold Wegner, Johannes Benduhn, Jonas Kublitski, Martin Schwarze, Sebastian Schellhammer, Felix Talnack, Astrid Vogt, Peter Bäuerle, Norbert Koch, Stefan C. B. Mannsfeld, Hans Kleemann, Frank Ortmann, Karl Leo

  • Blending organic molecules to tune their energy levels is currently investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy (IE) and electron affinity (EA) can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here, we show that the energy gap of organic semiconductors can be tuned by blending as well. We use oligothiophenes with different numbers of thiophene rings as example and investigate their structure and electronic properties. Photoelectron spectroscopy and inverse photoelectron spectroscopy show tunability of the single-particle gap, with the optical gaps showing similar, but smaller effects. Theoretical analysis shows that this tuning is mainly caused by a change in the dielectric constant with blend ratio. Further studies will explore the practical impact of this ...

Latest version: v1
Publication date: Apr 28, 2021


Prediction of yield strength in refractory body-centered-cubic High Entropy Alloys

DOI10.24435/materialscloud:fs-27

Francesco Maresca, Chanho Lee, Rui Feng, Yi Chou, Tamas Ungar, Michael Widom, Jonathan Poplawsky, Yi-Chia Chou, Peter Liaw, William Curtin

  • Energy efficiency is motivating the search for new high-temperature metals. Some new body-centered-cubic random multicomponent "high entropy alloys (HEAs)" based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here, by using a recent mechanistic theory, we have computed the high-temperature (T=1300K) yield strength based on solute strengthening of over 10 million alloys within the whole Al-Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr alloy family. Also the yield strength/density has been computed. This database enables the efficient search of new alloys with exceptional high-temperature strength.

Latest version: v1
Publication date: Apr 28, 2021


A Standard Solid State Pseudopotentials (SSSP) library optimized for precision and efficiency

DOI10.24435/materialscloud:y8-yw

Gianluca Prandini, Antimo Marrazzo, Ivano E. Castelli, Nicolas Mounet, Elsa Passaro, Nicola Marzari

  • Despite the enormous success and popularity of density functional theory, systematic verification and validation studies are still very limited both in number and scope. Here, we propose a universal standard protocol to verify publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain two optimal pseudopotential sets, namely the Standard Solid State Pseudopotential (SSSP) efficiency and precision libraries, tailored for high-throughput materials screening and high-precision materials modelling. As of today, the SSSP precision library is the most accurate open-source pseudopotential library available. This archive entry contains the database of calculations (phonons, cohesive energy, equation of state, band structure, pressure, etc.) together with the ...

Latest version: v6
Publication date: Apr 23, 2021


On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons

DOI10.24435/materialscloud:xj-bb

Xiushang Xu, Marco Di Giovannantonio, José I. Urgel, Carlo A. Pignedoli, Pascal Ruffieux, Klaus Müllen, Roman Fasel, Akimitsu Narita

  • In the record we provide the inputs and outputs for the calculations that support our recent results in the synthesis of pentagon-fused graphene nanoribbons (GNRs). GNRs have potential for applications in electronic devices. A key issue, thereby, is the fine-tuning of their electronic characteristics, which can be achieved through subtle structural modifications. These are not limited to the conventional armchair, zigzag, and cove edges, but also possible through incorporation of non-hexagonal rings. On-surface synthesis enables the fabrication and visualization of GNRs with atomically precise chemical structures, but strategies for the incorporation of non-hexagonal rings have been underexplored. In the manuscript, we describe the on-surface synthesis of armchair-edged GNRs with incorporated five-membered rings through the C-H activation and cyclization of benzylic methyl groups. ortho-Tolyl-substituted dibromobianthryl was employed as the precursor monomer, and visualization of ...

Latest version: v1
Publication date: Apr 15, 2021


Rules of formation of H–C–N–O compounds at high pressure and the fates of planetary ices

DOI10.24435/materialscloud:p6-zh

Lewis J. Conway, Chris J. Pickard, Andreas Hermann

  • Results of an ab initio structure search on the H+C+N+O quaternary space at 500GPa. The solar system’s outer planets, and many of their moons, are dominated by matter from the H–C–N–O chemical space, based on solar system abundances of hydrogen and the planetary ices H2O, CH4 , and NH3 . In the planetary interiors, these ices will experience extreme pressure conditions, around 5 Mbar at the Neptune mantle–core boundary, and it is expected that they undergo phase transitions, decompose, and form entirely new compounds. While temperature will dictate the formation of compounds, ground- state density functional theory allows us to probe the chemical effects resulting from pressure alone. These structural developments in turn determine the planets’ interior structures, thermal evolution, and magnetic field generation, among others. Despite its importance, the H–C–N–O system has not been surveyed systematically to explore which compounds emerge at high-pressure conditions, and what ...

Latest version: v1
Publication date: Apr 12, 2021


Dictionary of 140k GDB and ZINC derived AMONs

DOI10.24435/materialscloud:1s-51

Bing Huang, Anatole von Lilienfeld

  • We present all AMONs for GDB and Zinc data-bases using no more than 7 non-hydrogen atoms (AGZ7)---a calculated organic chemistry building-block dictionary based on the AMON approach [Huang and von Lilienfeld, Nature Chemistry (2020)]. AGZ7 records Cartesian coordinates of compositional and constitutional isomers, as well as properties for ∼140k small organic molecules obtained by systematically fragmenting all molecules of Zinc and the majority of GDB17 into smaller entities, saturating with hydrogens, and containing no more than 7 heavy atoms (excluding hydrogen atoms). AGZ7 cover the elements H, B, C, N, O, F, Si, P, S, Cl, Br, Sn and I and includes optimized geometries, total energy and its decomposition, Mulliken atomic charges, dipole moment vectors, quadrupole tensors, electronic spatial extent, eigenvalues of all occupied orbitals, LUMO, gap, isotropic polarizability, harmonic frequencies, reduced masses, force constants, IR intensity, normal coordinates, rotational ...

Latest version: v1
Publication date: Apr 11, 2021


A new dataset of 175k stable and metastable materials calculated with the PBEsol and SCAN functionals

DOI10.24435/materialscloud:r5-gx

Jonathan Schmidt, Hai-Chen Wang, Tiago F. T. Cerqueira, Silvana Botti, Miguel A. L. Marques

  • In the past decade we have witnessed the appearance of large databases of calculated material properties. These are most often obtained with the Perdew-Burke-Ernzerhof (PBE) functional of density-functional theory, a well established and reliable technique that is by now the standard in materials science. However, there have been recent theoretical developments that allow for an increased accuracy in the calculations. Here, we present a dataset of calculations for 175k solid-state materials obtained with two improved functionals: PBE for solids (that yields consistently better geometries than the PBE) and SCAN (probably the best all-around functional at the moment). Our results provide an accurate overview of the landscape of stable (and nearly stable) materials, and as such can be used for more reliable predictions of novel compounds. They can also be used for training machine learning models, or even for the comparison and benchmark of PBE, PBE for solids, and SCAN.

Latest version: v1
Publication date: Apr 09, 2021


Reinvestigating the surface and bulk electronic properties of Cd3As2

DOI10.24435/materialscloud:f2-b1

Silvan Roth, Hyungjun Lee, Andrea Sterzi, Michele Zacchigna, Antonio Politano, Raman Sankar, Fang-Cheng Chou, Giovanni Di Santo, Luca Petaccia, Oleg V. Yazyev, Alberto Crepaldi

  • This record contains the experimental results of our reinvestigation of the bulk and surface electronic properties of Cd3As2, a well-known material proposed to realize the 3D Dirac semimetal phase. By using polarization-based matrix element effects in photoemission, we reveal multiple bands crossing the Fermi level, characterized by different orbital character. Those states exhibit also largely different effective masses, and by combining alkali metal deposition and photon energy dependent ARPES, we report that the linearly dispersing band, which was previously interpreted as a bulk Dirac particle, is indeed a 2D surface Dirac state.

Latest version: v1
Publication date: Apr 09, 2021


Persistence of a surface state arc in the topologically trivial phase of MoTe2

DOI10.24435/materialscloud:1m-6f

Alberto Crepaldi, Gabriel Autès, Andrea Sterzi, Giulia Manzoni, Michele Zacchigna, Federico Cilento, Ivana Vobornik, Jun Fujii, Philippe Bugnon, Arnaud Magrez, Helmuth Berger, Fulvio Parmigiani, Oleg V. Yazyev, Marco Grioni

  • This record contains the experimental band structure of MoTe2. The material exhibits a structural phase transition at approximately 240 K, and in the low-temperature 1T’ phase is expected to realize the type-II Weyl semimetal phase. In our data we compare the band structure and the Fermi surface in the topological and in the trivial (1T’’) phase. We report the existence of large surface arc, which is persistent across the topological phase transition, and we conclude that its observation cannot be taken alone as a smoking gun of the Weyl semimetal phase. The study is completed by a spin-resolved ARPES study of the bulk electronic properties in the low-temperature topological phase

Latest version: v1
Publication date: Apr 09, 2021


Enhanced ultrafast relaxation rate in the Weyl semimetal phase of MoTe2 measured by time- and angle-resolved photoelectron spectroscopy

DOI10.24435/materialscloud:ws-za

Alberto Crepaldi, Gabriel Autès, Gianmarco Gatti, Silvan Roth, Andrea Sterzi, Giulia Manzoni, Michele Zacchigna, Cephice Cacho, Richard T. Chapman, Emma Springate, Elaine A. Seddon, Philippe Bugnon, Arnaud Magrez, Helmuth Berger, Ivana Vobornik, Matthias Kalläne, Arndt Quer, Kai Rossnagel, Fulvio Parmigiani, Oleg V. Yazyev, Marco Grioni

  • This record contains the results of the first experimental investigation of the change in the electron dynamics across the topological phase transition from the type-II Weyl semimetal phase of MoTe2 to the trivial phase. By using the capability of time-resolved ARPES to access the unoccupied density of states, we succeed in transiently populating the Weyl points, which are otherwise above the Fermi level and out of the reach of conventional ARPES. We observe a bottleneck in the electron dynamics when the Weyl points annihilate and gaps are opened in the high-temperature trivial phase. This interpretation is supported by the observation that, in the “sister” compound WTe2 the dynamics is not affected by the change in temperature, and it is always much slower, thus reflecting the larger energy separation between the valence and conduction band.

Latest version: v1
Publication date: Apr 09, 2021


SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

DOI10.24435/materialscloud:2b-ht

Andrea Sterzi, Alberto Crepaldi, Federico Cilento, Giulia Manzoni, Emmanouil Frantzeskakis, Michele Zacchigna, Erik van Heumen, Yingkai Huang, Mark S. Golden, Fulvio Parmigiani

  • This record contains the experimental results of the first ultrafast spectroscopic investigation of the electronic properties of SmB6, proposed to realize a Kondo topological insulator. We employ a multi-temperature model to extract the electron-phonon coupling constant in the range 0.13-0.04, within the assumption of a strong coupling to the optical phonon modes in the range 10-19 meV.

Latest version: v1
Publication date: Apr 09, 2021


Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water

DOI10.24435/materialscloud:4v-0w

Manyi Yang, Luigi Bonati, Daniela Polino, Michele Parrinello

  • The study of chemical reactions in aqueous media is very important for its implications in several fields of science, from biology to industrial processes. However, modeling these reactions is difficult when water directly participates in the reaction, since it requires a fully quantum mechanical description of the system. Ab-initio molecular dynamics is the ideal candidate to shed light on these processes. However, its scope is limited by a high computational cost. A popular alternative is to perform molecular dynamics simulations powered by machine learning potentials, trained on an extensive set of quantum mechanical calculations. Doing so reliably for reactive processes is difficult because it requires including very many intermediate and transition state configurations. In this study we used an active learning procedure accelerated by enhanced sampling to harvest such structures and to build a neural-network potential to study the urea decomposition process in water. This ...

Latest version: v1
Publication date: Apr 08, 2021


Accurate and scalable multi-element graph neural network force field and molecular dynamics with direct force architecture

DOI10.24435/materialscloud:66-ec

Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris Kozinsky, Jonathan Mailoa

  • Data includes the the ab initio molecular dynamic simulation of Li7P3S11 that was used to measure the performance of the GNNFF. The data is divided into training and testing sets. Brief descirption of the work: Recently, machine learning (ML) has been used to address the computational cost that has been limiting ab initio molecular dynamics (AIMD). Here, we present GNNFF, a graph neural network framework to directly predict atomic forces from automatically extracted features of the local atomic environment that are translationally-invariant, but rotationally-covariant to the coordinate of the atoms. We demonstrate that GNNFF not only achieves high performance in terms of force prediction accuracy and computational speed on various materials systems, but also accurately predicts the forces of a large MD system after being trained on forces obtained from a smaller system. Finally, we use our framework to perform an MD simulation of Li7P3S11, a superionic conductor, and show that ...

Latest version: v1
Publication date: Apr 06, 2021


Time-resolved ARPES at LACUS: band structure and ultrafast electron dynamics of solids

DOI10.24435/materialscloud:jy-5c

Alberto Crepaldi, Silvan Roth, Gianmarco Gatti, Christopher A. Arrell, José Ojeda, Frank van Mourik, Philippe Bugnon, Arnaud Magrez, Helmuth Berger, Majed Chergui, Marco Grioni

  • This record contains the first experimental results obtained at the time-resolved ARPES endstation developed at the Lausanne Centre for Ultrafast Science. The use of VUV photons, generated by means of high-harmonic generation in gas, allows us to explore the out-of-equilibrium electron dynamics over the entire Brillouin zone of solids. In this work we give evidence of this capability by accessing the linearly dispersing surface state of the nodal-line Dirac semimetal ZrSiTe.

Latest version: v1
Publication date: Apr 02, 2021


Enlisting potential cathode materials for rechargeable Ca batteries.

DOI10.24435/materialscloud:4j-gj

M. Elena Arroyo-de Dompablo, Jose Luis Casals

  • The development of rechargeable batteries based on a Ca metal anode demands the identification of suitable cathode materials. This work investigates the potential application of a variety of compounds, which are selected from the In-organic Crystal Structural Database (ICSD) considering 3d-transition metal oxysulphides, pyrophosphates, silicates, nitrides, and phosphates with a maximum of four different chemical elements in their composition. Cathode perfor-mance of CaFeSO, CaCoSO, CaNiN, Ca3MnN3, Ca2Fe(Si2O7), CaM(P2O7) (M = V, Cr, Mn, Fe, Co), CaV2(P2O7)2, Ca(VO)2(PO4)2 and α-VOPO4 is evaluated throughout the calculation of operation voltages, volume changes associated to the redox reaction and mobility of Ca2+ ions. Some materials exhibit attractive specific capacities and intercalation voltages combined with energy barriers for Ca migration around 1 eV (CaFeSO, Ca2FeSi2O7 and CaV2(P2O7)2). Based on the DFT results, αI-VOPO4 is identified as a potential Ca-cathode with a ...

Latest version: v1
Publication date: Apr 01, 2021


Semi-local and hybrid functional DFT data for thermalised snapshots of polymorphs of benzene, succinic acid, and glycine

DOI10.24435/materialscloud:vp-jf

Edgar A. Engel, Venkat Kapil

  • Structure prediction for molecular crystals is a longstanding challenge, as often minuscule free energy differences between polymorphs are sensitively affected by the description of electronic structure, the statistical mechanics of the nuclei and the cell, and thermal expansion. The importance of these effects has been individually established, but rigorous free energy calculations, which simultaneously account for all terms, have not been computationally viable. Here we reproduce the experimental stabilities of polymorphs of prototypical compounds -- benzene, glycine, and succinic acid -- by computing rigorous first-principles Gibbs free energies, at a fraction of the cost of conventional methods. This is achieved by a bottom-up approach, which involves generating machine-learning potentials to calculate surrogate free energies and subsequently calculating true first-principles free energies using inexpensive free energy perturbations. Accounting for all relevant physical ...

Latest version: v1
Publication date: Mar 26, 2021


Simulating solvation and acidity in complex mixtures with first-principles accuracy: the case of CH₃SO₃H and H₂O₂ in phenol

DOI10.24435/materialscloud:2x-7x

Kevin Rossi, Veronika Juraskova, Raphael Wischert, Laurent Garel, Clemence Corminboeuf, Michele Ceriotti

  • Set of inputs to perform the calculations reported in the paper. The i-pi input enables to perform molecular dynamics / metadynamics / REMD / PIMD simulations, with adequate thermostats. The DFTB and LAMMPS input respectively enable to calculate force and energies within the DFTB and Neural Network Forcefield frameworks. The CP2K input files enable to calculate force and energies at PBE and PBE0 level. The latter is used as the reference to train the neural network correction on top of DFTB. Brief description of the work: We present a generally-applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in explicit solvent using H₂O₂ and CH₃SO₃H in phenol as an example. In order to address the challenges posed by the complexity of the problem, we resort to a set of data-driven methods and enhanced sampling algorithms. The synergistic application of these techniques makes the first-principle estimation of ...

Latest version: v2
Publication date: Mar 26, 2021


Detecting electron-phonon coupling during photoinduced phase transition

DOI10.24435/materialscloud:c0-q1

Takeshi Suzuki, Yasushi Shinohara, Yangfan Lu, Mari Watanabe, Jiadi Xu, Kenichi L. Ishikawa, Hide Takagi, Minoru Nohara, Naoyuki Katayama, Hiroshi Sawa, Masami Fujisawa, Teruto Kanai, Jiro Itatani, Takashi Mizokawa, Shik Shin, Kozo Okazaki

  • This record contains the data supporting our recent findings on electron-phonon coupling during photoinduced phase transition. We measure mode- and band-selective electron-phonon couplings during the photoinduced insulator-to-metal phase transition in Ta2NiSe5 (TNS) by frequency-domain angle-resolved photoemission spectroscopy (FDARPES). FDARPES gives us rich information about which band more couples which phonon mode by seeing frequency components of time-resolved angle-resolved photoemission spectra. The experiments indicate 2 THz and 3 THz phonon modes associated with the metallic and semiconducting phases. To get a more atomistic picture of the oscillation, we perform phonon-mode calculations relying on the density-functional theory (DFT). The computational scheme itself is very standard that density-functional-perturbation theory (DFPT) with semilocal or local exchange-correlation functionals. However, the required computational resources were rather ...

Latest version: v1
Publication date: Mar 26, 2021


Correlation between electronic and structural orders in 1T-TiSe2

DOI10.24435/materialscloud:60-01

Hiroki Ueda, Michael Porer, José Mardegan, Sergii Parchenko, Namrata Gurung, Federica Fabrizi, Mahesh Ramakrishnan, Larissa Boie, Martin Neugebauer, Bulat Burganov, Max Burian, Steven Johnson, Kai Rossnagel, Urs Staub

  • The correlation between electronic and crystal structures of 1T -TiSe2 in the charge-density wave (CDW) state is studied by x-ray diffraction in order to clarify basic properties in the CDW state, transport properties, and chirality. Three families of reflections are used to probe atomic displacements and the orbital asymmetry in Se. Two distinct onset temperatures are found: TCDW and a lower T∗ indicative for an onset of Se out-of-plane atomic displacements. T∗ coincides with a DC resistivity maximum and the onset of the proposed gyrotropic (chiral) electronic structure. However, no indication for chirality is found. The relation between the atomic displacements and the transport properties is discussed in terms of Ti 3d and Se 4p states that only weakly couple to the CDW order.

Latest version: v1
Publication date: Mar 26, 2021


Improved wetting model for the prediction of topography and dimensionality of superomniphobic surfaces

DOI10.24435/materialscloud:z5-ec

Nikolaos Lempesis, Aleš Janka, Oksana Gnatiuk, Stef J.L. van Eijndhoven, Rudolf J. Koopmans

  • This code calculates the contact angle formed between a sessile drop of an arbitrarily defined liquid and a rough surface based on our improved Cassie-Baxter wetting model (https://doi.org/10.1088/2051-672X/ab9419). The topography of the surface needs to be predefined into the input file and may be any of the types: a) 2D pillars, b) fibers, c) sinusoids, d) 3D pillars. Although, theoretically, our model can be applied to topographies with arbitrarily large multiplicity, here the code was devised such that it considers up to three-level topographies hierarchically placed on top of one another. In the “Input” directory, three input files are given for single, two-level and three-level topographies, respectively. In multilevel topographies, the above-mentioned topography types may be combined at will. So, for example, we may have a three-level topography with sinusoidal pulses as the coarser level, fibers as the middle-level and 2D pillars as the finest level. Similarly, two-level ...

Latest version: v1
Publication date: Mar 23, 2021


Simulating the ghost: quantum dynamics of the solvated electron

DOI10.24435/materialscloud:dz-a0

Jinggang Lan, Venkat Kapil, Piero Gasparotto, Michele Ceriotti, Marcella Iannuzzi, Vladimir Rybkin

  • The nature of the bulk hydrated electron has been a challenge for both experiment and theory due to its short lifetime and high reactivity, and the need for a high-level of electronic structure theory to achieve predictive accuracy. The lack of a classical atomistic structural formula makes it exceedingly difficult to model the solvated electron using conventional empirical force fields, which describe the system in terms of interactions between point particles associated with atomic nuclei. Here we overcome this problem using a machine-learning model, that is sufficiently flexible to describe the effect of the excess electron on the structure of the surrounding water, without including the electron in the model explicitly. The resulting potential is not only able to reproduce the stable cavity structure but also recovers the correct localization dynamics that follow the injection of an electron in neat water. The machine learning model achieves the accuracy of the ...

Latest version: v1
Publication date: Mar 18, 2021


Hidden order and multipolar exchange striction in a correlated f-electron system

DOI10.24435/materialscloud:12-7q

Leonid V. Pourovskii, Sergii Khmelevskyi

  • The nature of order in low-temperature phases of some materials is not directly seen by experiment. Such "hidden orders" (HO) may inspire decades of research to identify the mechanism underlying those exotic states of matter. In insulators, HO phases originate in degenerate many-electron states on localized f or d shells that may harbor high-rank multipole moments. Coupled by inter-site exchange, those moments form a vast space of competing order parameters. Here, we show how the ground state order and magnetic excitations of a prototypical HO system, neptunium dioxide NpO2, can be fully described by a low-energy Hamiltonian derived by a many-body ab initio force theorem method. Superexchange interactions between the lowest crystal-field quadruplet of Np4+ ions induce a primary non-collinear order of time-odd rank-5 (triakontadipolar) moments with a secondary quadrupole order preserving the cubic symmetry of NpO2. Our study also reveals an unconventional multipolar ...

Latest version: v1
Publication date: Mar 18, 2021


Data for ferromagnetic resonance simulation in a microtube

DOI10.24435/materialscloud:he-d6

Vladimir Fel'k, Sergey Komogortsev

  • Ferromagnetic resonance fields in a microtube with the various ratio of the inner and outer diameter of the tube β were studied using micromagnetic simulation. For β < 0.15 the resonance field agrees with the prediction of the Kittel equation for an infinite ferromagnetic cylinder for both parallel and perpendicular orientation of the applied field to its axis. For β > 0.15 the resonance field increases from the resonance field of the infinite cylinder and approaches the level of the film magnetized along the plane. This behavior was at odds both with the prediction that can be made using analytically calculated demagnetizing factor in ferromagnetic tube, and with the prediction that use the empirical dependence of the demagnetizing field on β, established from the magnetization curves. For β > 0.15 and transverse applied field a number of resonance peaks were observed.

Latest version: v1
Publication date: Mar 17, 2021


Elucidating structure and function of Ni/La-doped-ceria catalysts for CO2 reduction by the reverse water gas shift reaction

DOI10.24435/materialscloud:dc-46

Consuelo Alvarez-Galvan, Pablo Lustemberg, Jose A. Alonso, Freddy Oropeza, María Herranz, Jesus Cebollada, Martin Dapena, Jose M. Campos-Martin, Victor A. de la Peña-O’Shea, M. Veronica Ganduglia-Pirovano

  • Reducing and/or utilizing CO2 in the atmosphere is mandatory to decrease its negative effects as greenhouse gas. The reverse water gas shift reaction (rWGS) is one of the most promising routes for CO2 valorization. Here, we show that Ni/La-doped ceria catalysts, prepared by the solution combustion synthesis method, has an excellent catalytic performance per unit mass of catalyst. Structure-activity correlations obtained using a combination of different techniques such as X-ray and neutron diffraction, Raman spectroscopy, in-situ NAP-XPS, Electron Microscopy, and catalytic testing, point out to optimum values for the Ni loading and the La proportion. Density functional theory calculations of the elementary steps of the reaction on model Ni/ceria catalysts aid toward the microscopic understanding of the active sites nature. Metallic Ni activates H2 dissociation and a certain La doping maximizes Ce3+ sites, which supplies greater available oxygen to form H2O. These findings are ...

Latest version: v1
Publication date: Mar 17, 2021


Gaussian approximation potentials (GAP) for germanium telluride

DOI10.24435/materialscloud:pd-g9

Đorđe Dangić, Stephen Fahy, Ivana Savić

  • Quasiharmonic theory of atomic vibrations usually fails to describe materials that undergo structural phase transitions, which is the case with germanium telluride (GeTe) at high temperatures. To correctly model vibrational properties of GeTe at high temperatures, we use the temperature dependent effective potential (TDEP) method (Physical Review B 88, 144301 (2013)). Collecting data needed to fit TDEP models involves running ab-initio molecular dynamics (MD) simulations. These MD simulations can be very CPU time consuming. In order to speed up MD simulations, we fitted an interatomic potential using the Gaussian Approximation Potential (GAP) approach (Physical Review Letters 104, 136403 (2010)) to obtain interatomic forces during MD simulations. This dataset consists of the training set of density functional theory energies and forces of GeTe for GAP, and the training script used to generate the interatomic potential.

Latest version: v1
Publication date: Mar 16, 2021


Structure determination of an amorphous drug through large-scale NMR predictions

DOI10.24435/materialscloud:gg-mx

Manuel Cordova, Martins Balodis, Albert Hofstetter, Federico Paruzzo, Sten O. Nilsson Lill, Emma S. E. Eriksson, Pierrick Berruyer, Bruno Simões de Almeida, Michael J. Quayle, Stefan T. Norberg, Anna Svensk Ankarberg, Staffan Schantz, Lyndon Emsley

  • Knowledge of the structure of amorphous solids can direct, for example, the optimization of pharmaceutical formulations, but atomic-level structure determination in amorphous molecular solids has so far not been possible. Solid-state NMR is among the most popular methods to characterize amorphous materials, and Molecular Dynamics (MD) simulations can help describe the structure of disordered materials. However, directly relating MD to NMR experiments in molecular solids has been out of reach until now because of the large size of these simulations. Here, using a machine learning model of chemical shifts, we determine the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR experiments with predicted chemical shifts for MD simulations of large systems. From these amorphous structures we then identify H-bonding motifs and relate them to local intermolecular complex formation energies.

Latest version: v1
Publication date: Mar 16, 2021


Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts

DOI10.24435/materialscloud:vp-h5

Simone Gallarati, Raimon Fabregat, Rubén Laplaza, Sinjini Bhattacharjee, Matthew Wodrich, Clemence Corminboeuf

  • Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal ...

Latest version: v1
Publication date: Mar 05, 2021


Importance of surface oxygen vacancies for ultrafast hot carrier relaxation and transport in Cu2O

DOI10.24435/materialscloud:rr-2n

Chiara Ricca, Ulrich Aschauer, Lisa Grad, Matthias Hengsberger, Jürg Osterwalder

  • Cu2O has appealing properties as an electrode for photo-electrochemical water splitting, yet its practical performance is severely limited by inefficient charge extraction at the interface. Using hybrid DFT calculations, we investigate carrier capture processes by oxygen vacancies (VO) in the experimentally observed (√3×√3)R30° reconstruction of the dominant (111) surface. Our results show that these VO are doubly ionized and that associated defects states strongly suppress electron transport. In particular, the excited electronic state of a singly charged VO plays a crucial role in the non-radiative electron capture process with a capture coefficient of about 10^-9 cm3/s and a lifetime of 0.04 ps, explaining the experimentally observed ultrafast carrier relaxation. These results highlight that engineering the surface VO chemistry will be a crucial step in optimizing Cu2O for photoelectrode applications.

Latest version: v1
Publication date: Mar 05, 2021


Asymmetric azide‐alkyne Huisgen cycloaddition on chiral metal surfaces

DOI10.24435/materialscloud:tx-8g

Samuel Stolz, Michael Bauer, Carlo A. Pignedoli, Nils Krane, Max Bommert, Elia Turco, Nicolo Bassi, Amogh Kinikar, Néstor Merino-Dìez, Roland Hany, Harald Brune, Oliver Gröning, Roland Widmer

  • The record contains the data supporting our recent findings on asymmetric azide-alkyne Huisgen cycloaddition on chiral metal surfaces: Achieving fundamental understanding of enantioselective heterogeneous synthesis is marred by the permanent presence of multitudinous arrangements of catalytically active sites in real catalysts. We address this issue by using structurally comparatively simple, well‐defined, and chiral intermetallic PdGa{111} surfaces as catalytic substrates. We demonstrate the impact of chirality transfer and ensemble effect for the thermally activated azide‐alkyne Huisgen cycloaddition between 3‐(4‐azidophenyl)propionic acid and 9‐ethynylphenanthrene on these threefold symmetric intermetallic surfaces under ultrahigh vacuum conditions. Specifically, we encounter a dominating ensemble effect for this reaction as on the Pd3‐terminated PdGa{111} surfaces no stable heterocoupled structures are created, while on the Pd1‐terminated PdGa{111} surfaces, the cycloaddition ...

Latest version: v1
Publication date: Mar 02, 2021


Reversible dehalogenation in on-surface aryl-aryl coupling

DOI10.24435/materialscloud:71-t1

Samuel Stolz, Marco Di Giovannantonio, José I. Urgel, Qiang Sun, Amogh Kinikar, Gabriela Borin Barin, Max Bommert, Roman Fasel, Roland Widmer

  • The record contains the data to support the findings of our recent work on reversibility of the dehalogenation process in on-surface aryl-aryl coupling. In the emerging field of on‐surface synthesis, dehalogenative aryl–aryl coupling is unarguably the most prominent tool for the fabrication of covalently bonded carbon‐based nanomaterials. Despite its importance, the reaction kinetics are still poorly understood. Here we present a comprehensive temperature‐programmed x‐ray photoelectron spectroscopy investigation of reaction kinetics and energetics in the prototypical on‐surface dehalogenative polymerization of 4,4′′‐dibromo‐p‐terphenyl into poly(para‐phenylene) on two coinage metal surfaces, Cu(111) and Au(111). We find clear evidence for reversible dehalogenation on Au(111), which is inhibited on Cu(111) owing to the formation of organometallic intermediates. The incorporation of reversible dehalogenation in the reaction rate equations leads to excellent agreement with ...

Latest version: v1
Publication date: Mar 02, 2021


Extensive benchmarking of DFT+U calculations for predicting band gaps

DOI10.24435/materialscloud:jx-fp

Nicole Kirchner-Hall, Wayne Zhao, Yihuang Xiong, Iurii Timrov, Ismaila Dabo

  • Accurate computational predictions of band gaps are of practical importance to the modeling and development of semiconductor technologies, such as (opto)electronic devices and photoelectrochemical cells. Among available electronic-structure methods, density-functional theory (DFT) with the Hubbard U correction (DFT+U) applied to band edge states is a computationally tractable approach to improve the accuracy of band gap predictions beyond that of DFT calculations based on (semi)local functionals. At variance with DFT approximations, which are not intended to describe optical band gaps and other excited-state properties, DFT+U can be interpreted as an approximate spectral-potential method when U is determined by imposing the piecewise linearity of the total energy with respect to electronic occupations in the Hubbard manifold (thus removing self-interaction errors in this subspace), thereby providing a (heuristic) justification for using DFT+U to predict band gaps. However, it is ...

Latest version: v1
Publication date: Mar 02, 2021


Building a consistent and reproducible database for adsorption evaluation in Covalent-Organic Frameworks

DOI10.24435/materialscloud:5q-jt

Daniele Ongari, Aliaksandr V. Yakutovich, Leopold Talirz, Berend Smit

  • We present a workflow that traces the path from the bulk structure of a crystalline material to assessing its performance in carbon capture from coal’s postcombustion flue gases. This workflow is applied to a database of 324 covalent−organic frameworks (COFs) reported in the literature, to characterize their CO2 adsorption properties using the following steps: (1) optimization of the crystal structure (atomic positions and unit cell) using density functional theory, (2) fitting atomic point charges based on the electron density, (3) characterizing the pore geometry of the structures before and after optimization, (4) computing carbon dioxide and nitrogen isotherms using grand canonical Monte Carlo simulations with an empirical interaction potential, and finally, (5) assessing the CO2 parasitic energy via process modeling. The full workflow has been encoded in the Automated Interactive Infrastructure and Database for Computational Science (AiiDA). Both the workflow and the ...

Latest version: v8
Publication date: Feb 24, 2021


Bias free multiobjective active learning for materials design and discovery

DOI10.24435/materialscloud:8m-6d

Kevin Maik Jablonka, Giriprasad Melpatti Jothiappan, Shefang Wang, Berend Smit, Brian Yoo

  • The design rules for materials are clear for applications with a single objective. For most applications, however, there are often multiple, sometimes competing objectives where there is no single best material, and the design rules change to finding the set of Pareto optimal materials. In this work, we introduce an active learning algorithm that directly uses the Pareto dominance relation to compute the set of Pareto optimal materials with desirable accuracy. We apply our algorithm to de novo polymer design with a prohibitively large search space. Using molecular simulations, we compute key descriptors for dispersant applications and reduce the number of materials that need to be evaluated to reconstruct the Pareto front with a desired confidence by over 98% compared to random search. This work showcases how simulation and machine learning techniques can be coupled to discover materials within a design space that would be intractable using conventional screening approaches.

Latest version: v1
Publication date: Feb 22, 2021


Effect of density, phonon scattering and nanoporosity on the thermal conductivity of anisotropic cellulose nanocrystal foams

DOI10.24435/materialscloud:49-t3

Varvara Apostolopoulou-Kalkavoura, Pierre Munier, Lukasz Dlugozima, Veit-Lorenz Heuthe, Lennart Bergström

  • Ice templated anisotropic foams based on cellulose nanocrystals (CNC) with densities ranging between 25 to 129 kg.m-3 were prepared from aqueous CNC dispersions. The thermal conductivities perpendicular to the columnar macropores direction increased in a non-monotonous way with the increasing CNC foam density while the thermal conductivity reached a minimum value (24 mW m-1 K-1 at 20% RH and 295 K) for the CNC foam with the highest nanoporosity. Summation of the theoretical thermal conductivity calculations of the solid and gas conduction within the foams as well as the thermal conductivity of water showed that phonon scattering at the solid-solid interfaces is responsible for reaching very low thermal conductivity values. The foam wall nanoporosity, the particle alignment, the macropores orientation and the foam wall thickness seem to have a minimal effect on the thermal conductivity but can explain the deviations between the theoretical estimates and the experimental data. To ...

Latest version: v1
Publication date: Feb 16, 2021


Machine learning for metallurgy: a neural network potential for Al-Mg-Si

DOI10.24435/materialscloud:k1-rv

Abhinav C. P. Jain, Daniel Marchand, Albert Glensk, Michele Ceriotti, W. A. Curtin

  • High-strength metal alloys achieve their performance via careful control of the nucleation, growth, and kinetics of precipitation. Alloy mechanical properties are then controlled by atomic scale phenomena such as shearing of the precipitates by dislocations. Atomistic modeling to understand the operative mechanisms requires length and time scales far larger than those accessible by first-principles methods. Here, a family of Behler-Parinello neural-network potentials (NNPs) for the Al-Mg-Si system is developed to enable quantitative studies of Al-6xxx alloys. The NNP is trained on metallurgically-important quantities computed by first principles density functional theory (DFT) leading to high fidelity predictions of intermetallic compounds, elastic constants, dilute solid-solution energetics, precipitate/matrix interfaces, Al stacking fault energies, antisite defect energies, and other quantities. A preliminary examination of early-stage clustering kinetics and energetics in ...

Latest version: v1
Publication date: Feb 09, 2021


Appraisal of calcium ferrites as cathodes for calcium rechargeable batteries: DFT, synthesis, characterization and electrochemistry of Ca4Fe9O17

DOI10.24435/materialscloud:xk-sn

M. Elena Arroyo-de Dompablo, José Luis Casals

  • Sustainability combined with high energy density prospects makes Fe-based oxides attractive as cathodes for calcium rechargeable batteries. This work presents a DFT evaluation of the CaFe2+nO4+n (0 < n < 3) family, for which both the average intercalation voltage and the theoretical specific capacity decrease with the increasing n value. The term n = 1/4, Ca4Fe9O17, meets the most appealing characteristics: a calculated average voltage of 4.16 V, a theoretical specific capacity of 230 mA h g−1 and the lowest energy barrier for Ca migration so far predicted for an existing oxide (0.72 eV). To overcome the previously reported synthesis difficulties, we employed a novel synthesis procedure in sealed quartz tubes followed by quenching in water. The XRD and SAED patterns of the prepared Ca4Fe9O17 powder reveal a certain degree of stacking defects along the c axis. Attempts to deinsert Ca ions from Ca4Fe9O17 by chemical means (NO2BF4 in ACN) and in electrochemical Ca cells were ...

Latest version: v1
Publication date: Feb 07, 2021


Efficient Kr/Xe separation from triangular g-C3N4 nanopores: density-functional theory calculations benchmarked with random phase approximation

DOI10.24435/materialscloud:vp-ms

Mohammad Tohidivahdat, Davide Campi, Nicola Colonna, Luis Francisco Villalobos, Nicola Marzari, Kumar Agrawal Varoon

  • Poly(triazine imide) or PTI is a promising material for molecular sieving membranes, thanks to its atom-thick ordered lattice with an extremely high density (1.6 × 10^14 pores/cm2) of triangular-shaped nanopores of ~0.34 nm diameter. Here, we investigate the application of PTI nanopores in the purification of Kr from Xe to reduce the storage volume of the mixture of 85Kr/Xe. Using van-der-Waals density-functional theory (vdW-DFT) calculations, benchmarked against the random phase approximation (RPA), we calculate the potential energy profiles for Kr and Xe across the nanopores. For each gas, starting from the RPA potential-energy profile, the force-field parameters to be used in the classical molecular dynamics framework are trained to calculate the Helmholtz free energy barrier as a function of temperature, and therefore, the corresponding entropic loss. Overall, due to the much higher activation energy from the adsorbed state in Xe (17.61 and 42.10 kJ/mole for Kr and Xe, ...

Latest version: v1
Publication date: Feb 07, 2021


Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process

DOI10.24435/materialscloud:9a-7y

Zhikai Tu, Weifeng Liu, Jin Wang, Jinhao Huang, Jinxing Li, Hongming Lou, Xueqing Qiu

  • Artificial muscle materials promise incredible applications in actuators, robotics and medical apparatus, yet the ability to mimic the full characteristics of skeletal muscles into synthetic materials remains a huge challenge. Herein, inspired by the dynamic sacrificial bonds in biomaterials and the self-strengthening of skeletal muscles by physical exercise, high performance artificial muscle material is prepared by rearrangement of sacrificial coordination bonds in the polyolefin elastomer via a repetitive mechanical training process. Biomass lignin is incorporated as a green reinforcer for the construction of interfacial coordination bonds. The prepared artificial muscle material exhibits high actuation strain (>40%), high actuation stress (1.5 MPa) which can lift more than 10000 times its own weight with 30% strain, characteristics of excellent self-strengthening by mechanical training, strain-adaptive stiffening, and heat/electric programmable actuation performance. In this ...

Latest version: v1
Publication date: Feb 07, 2021


DFT investigation of Ca mobility in reduced-perovskite and oxidized-marokite oxides

DOI10.24435/materialscloud:x9-qr

M. Elena Arroyo-de Dompablo, José Luis Casals

  • Progress in the development of rechargeable Ca-ion batteries demands the discovery of potential cathode materials. Transition metal oxides are interesting candidates due to their theoretical high energy densities, but with the drawback of a low Ca mobility. Previous computational/experimental investigations associate the electrochemical inactivity of various oxides (CaMO3-perovskite, CaMn2O4-post-spinel and CaV2O5) to high energy barriers for Ca migration. The introduction of oxygen and/or Ca vacancies in ternary transition metal oxides is a likely way to reshape the local topology and hence improve the Ca diffusivity. In this work, the energy barriers for Ca migration are calculated and discussed for (i) oxygen-deficient perovskites within the related Ca2Fe2O5-brownmillerite and Ca2Mn2O5 structures, and (ii) tunnel CaMn4O8, a derivative of the CaMn2O4-marokite with Ca vacancies.

Latest version: v1
Publication date: Feb 07, 2021


Radial spin texture of the Weyl fermions in chiral tellurium

DOI10.24435/materialscloud:gr-1f

G. Gatti, D. Gosálbez-Martínez, S. S. Tsirkin, M. Fanciulli, M. Puppin, S. Polishchuk, S. Moser, L. Testa, E. Martino, S. Roth, Ph. Bugnon, L. Moreschini, A. Bostwick, C. Jozwiak, E. Rotenberg, G. Di Santo, L. Petaccia, I. Vobornik, J. Fujii, J. Wong, D. Jariwala, H. A. Atwater, H. M. Rønnow, M. Chergui, O. V. Yazyev, M. Grioni, A. Crepaldi

  • In the present record we provide the theoretical calculations used in the article: G. Gatti et al., Radial Spin Texture of the Weyl Fermions in Chiral Tellurium, Phys. Rev. Lett. 125, 216402. It consist of a detailed analysis of the electronic structure and spin textures at different points of the Brillouin zone. We provide the band structure and spin expectation values along different high-symmetry lines, Fermi surface contour plots in the ΓMLA plane, and spin texture in small sphere around two points of the Brillouin zone. The data is provided as the output format of the Quantum Espresso package. We also include the pseudopotential used in these calculations.

Latest version: v1
Publication date: Jan 27, 2021


Structural involvement in the melting of the charge density wave in 1T-TiSe2

DOI10.24435/materialscloud:b3-e5

Max Burian, Michael Porer, Jose R.L. Mardegan, Vincent Esposito, Sergii Parchenko, Burganov Bulat, Namrata Gurung, Mahesh Ramakrishnan, Valerio Scagnoli, Hirkoi Ueda, Sonia Francoual, Federica Fabrizi, Yoshikazu Tanaka, Tadashi Togashi, Kai Rossnagel, Steven L. Johnson, Urs Staub

  • The simultaneous condensation of electronic and structural degrees of freedom gives rise to new states of matter, including superconductivity and charge-density-wave formation. When exciting such a condensed system, it is commonly assumed that the ultrafast laser pulse disturbs primarily the electronic order, which in turn destabilizes the atomic structure. Contrary to this conception, we show here that structural destabilization of few atoms causes macroscopic melting of the charge-density wave in 1T-TiSe2. In detail, we use ultrafast pump-probe non-resonant and resonant X-ray diffraction to track the periodic lattice distortion and the electronic charge density wave in 1T-TiSe2 upon optical excitation. We observe a fluence regime in which the periodic lattice deformation is strongly suppressed but the charge density wave related Se 4p orbital order remains mostly intact. Complete melting of both structural and electronic order occurs 4-5 times faster than expected from a purely ...

Latest version: v1
Publication date: Jan 27, 2021


Screening from eg states and antiferromagnetic correlations in d(1,2,3) perovskites: A GW+EDMFT investigation

DOI10.24435/materialscloud:wz-fw

Francesco Petocchi, Fredrik Nilsson, Ferdi Aryasetiawan, Philipp Werner

  • We perform a systematic ab initio study of the electronic structure of Sr(V,Mo,Mn)O3 perovskites, using the parameter-free GW+EDMFT method. This approach self-consistently calculates effective interaction parameters, taking into account screening effects due to nonlocal charge fluctuations. Comparing the results of a 3-band (t2g) description to those of a 5-band (t2g+eg) model, it is shown that the eg states have little effect on the low-energy properties and the plasmonic features for the first two compounds but play a more active role in SrMnO3. In the case of SrMnO3 paramagnetic GW+EDMFT yields a metallic low-temperature solution on the verge of a Mott transition, while antiferromagnetic GW+EDMFT produces an insulating solution with the correct gap size. We discuss the possible implications of this result for the nature of the insulating state above the Neel temperature, and the reliability of the GW+EDMFT scheme.

Latest version: v1
Publication date: Jan 27, 2021


Normal State of Nd_(1-x)Sr_xNiO2 from Self-Consistent GW+EDMFT

DOI10.24435/materialscloud:h0-kn

Francesco Petocchi, Viktor Christiansson, Fredrik Nilsson, Ferdi Aryasetiawan, Philipp Werner

  • Superconductivity with a remarkably high Tc has recently been observed in hole-doped NdNiO2, a material that shares similarities with the high-Tc cuprates. This discovery promises new insights into the mechanism of unconventional superconductivity, but at the modeling level, there are fundamental issues that need to be resolved. While it is generally agreed that the low-energy properties of cuprates can, to a large extent, be captured by a single-band model, there has been a controversy in the recent literature about the importance of a multiband description of the nickelates. Here, we use a multisite extension of the recently developed GW+EDMFT method, which is free of adjustable parameters, to self-consistently compute the interaction parameters and electronic structure of hole-doped NdNiO2. This full ab initio simulation demonstrates the importance of a multiorbital description, even for the undoped compound, and it produces results for the resistivity and Hall conductance in qualitative agreement with experiment.

Latest version: v1
Publication date: Jan 27, 2021


Torsional stress can regulate the unwrapping of two outer half superhelical turns of nucleosomal DNA

DOI10.24435/materialscloud:r9-xt

Hisashi Ishida, Hidetoshi Kono

  • Torsional stress has a significant impact on the structure and stability of the nucleosome. RNA polymerase imposes torsional stress on the DNA in chromatin and unwraps the DNA from the nucleosome to access the genetic information encoded in the DNA. To understand how the torsional stress affects the stability of the nucleosome, we examined the unwrapping of two half superhelical turns of nucleosomal DNA from either end of the DNA under torsional stress with all-atom molecular dynamics simulations. The free energies for unwrapping the DNA indicate that positive stress that overtwists DNA facilitates a large-scale asymmetric unwrapping of the DNA without a large extension of the DNA. During the unwrapping, one end of the DNA was dissociated from H3 and H2A-H2B while the other end of the DNA stably remained wrapped. The detailed analysis indicates that this asymmetric dissociation is facilitated by the geometry and bendability of the DNA under positive stress. The geometry ...

Latest version: v1
Publication date: Jan 27, 2021


Sampling enhancement by metadynamics driven by machine learning and de novo protein modelling

DOI10.24435/materialscloud:j9-0n

Kateřina Tomášková, Dalibor Trapl, Vojtěch Spiwok

  • Folding of villin miniprotein was studied by parallel tempering metadynamics driven by machine learning. To obtain a training set for machine learning, we generated a large series of structures of the protein by the de novo protein structure prediction package Rosetta. A neural network was trained to approximate the Rosetta score. Parallel tempering metadynamics driven by this approximated Rosetta score successfully predicted the native structure and the free energy surface of the studied system. These files make it possible to rerun all simulations. The directory METAD contains input files for metadynamics (no folding events observed). The directory PT-METAD contains input files for parallel tempering metadynamics. All simulations were done using Gromacs 2016.4, Anncolvar 0.8, Plumed 2.4 and OpenMPI 4.0.0.

Latest version: v3
Publication date: Jan 26, 2021


Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved images

DOI10.24435/materialscloud:w8-k3

Lukas Vlcek, Shize Yang, Yongji Gong, Pulickel Ajayan, Wu Zhou, Matthew Chisholm, Maxim Ziatdinov, Rama Vasudevan, Sergei Kalinin

  • Exploration of structure-property relationships as a function of dopant concentration is commonly based on mean field theories for solid solutions. However, such theories that work well for semiconductors tend to fail in materials with strong correlations, either in electronic behavior or chemical segregation. In these cases, the details of atomic arrangements are generally not explored and analyzed. The knowledge of the generative physics and chemistry of the material can obviate this problem, since defect configuration libraries as stochastic representation of atomic level structures can be generated, or parameters of mesoscopic thermodynamic models can be derived. To obtain such information for improved predictions, we use data from atomically resolved microscopic images that visualize complex structural correlations within the system and translate them into statistical mechanical models of structure formation. Given the significant uncertainties about the microscopic aspects ...

Latest version: v1
Publication date: Jan 26, 2021


Confinement effects and acid strength in Zeolites

DOI10.24435/materialscloud:m8-97

Emanuele Grifoni, GiovanniMaria Piccini, Johannes Lercher, Vassiliki-Alexandra Glezakou, Roger Rousseau, Michele Parrinello

  • Chemical reactivity and sorption in zeolites are coupled to confinement and - to a lesser extent- to the acid strength of Brønsted acid sites (BAS). In presence of water the zeolite Brønsted acid sites eventually convert into hydronium ions. The gradual transition from zeolite Brønsted acid sites to hydronium ions conversion in zeolites of varying pore size is examined by ab initio molecular dynamics combined with enhanced sampling based on well-tempered metadynamics and a recently developed set of collective variables. While at low water content (1-2 water/BAS) the acidic protons prefer to be shared between zeolites and water, higher water contents (n>2) invariably lead to solvation of the protons within a localized water cluster adjacent to the BAS. At low water loadings the standard free energy of the formed complexes is dominated by enthalpy and is associated with the acid strength of the BAS and the space around the site. Conversely, the entropy increases linearly with the ...

Latest version: v1
Publication date: Jan 26, 2021


Towards constant potential modeling of CO-CO coupling at liquid water-Cu(100) interfaces

DOI10.24435/materialscloud:p9-q7

Henrik H. Kristoffersen, Karen Chan

  • We have studied electrochemical *CO-*CO coupling in explicit electrolyte with density functional theory, molecular dynamics, and metadynamics. We considered both the *CO-*CO coupling reaction and the charging process required to keep the potential constant. The charging process consists of transferring explicit cations from the electrolyte and electrons from the potentiostat to the interface. Under constant charge conditions (non-constant electrostatic potential), the *CO-*CO coupling reaction energies are relative insensitive to the charge state at the interface and the electrolyte composition and the reaction occurs with co-adsorption of water. Under constant potential conditions, the *CO-*CO coupling reaction is stabilized at lower potentials because of charging and the reaction is influenced by the electrolyte composition. Here we have collected the data from the eight AIMD metadynamics simulations conducted in the study. Each AIMD data tar.gz file contains the VASP input ...

Latest version: v1
Publication date: Jan 26, 2021


Is a single conformer sufficient to describe the reorganization energy of amorphous organic transport materials?

DOI10.24435/materialscloud:te-6n

J. Terence Blaskovits, Kun-Han Lin, Raimon Fabregat, Iwona Swiderska, Hélène Wu, Clémence Corminboeuf

  • The reorganization energy (λ), which quantifies the structural rearrangement of a molecule when accommodating a charge, is a key parameter in the evaluation of charge mobility in molecular solids. However, it is unclear how λ is influenced by conformational isomerism, which co-exist in amorphous solids. Here, we examine the conformational space of a family of model amorphous organic hole transport materials (HTMs), derived from triphenylamine in a core-arm template, and probe the effect of conformational complexity on λ. We observe an extreme dependence of λ on the conformer geometry of sterically congested HTMs, which to the best of our knowledge has not been described previously. These results serve as a cautionary tale that, while extracting the reorganization energy from a single molecular conformer optimized in the gas phase may be appropriate for rigid and sterically unencumbered structures, it is not for many state-of-the-art HTMs that contain multiple bulky substituents.

Latest version: v1
Publication date: Jan 25, 2021


High Li-ion conductivity in tetragonal LGPO: a comparative first-principles study against known LISICON and LGPS phases

DOI10.24435/materialscloud:rs-1t

Giulliana Materzanini, Leonid Kahle, Aris Marcolongo, Nicola Marzari

  • This work presents extensive first-principles (Car-Parrinello) molecular dynamics simulations of the solid-state electrolyte Li10GeP2O12 (LGPO) in a tetragonal phase -not synthesized so far- that is isostructural to the highly Li-ion conductive tetragonal phase of the sulfide analogue Li10GeP2S12 (LGPS). We provide comparative simulations of the experimentally known orthorhombic phase of LGPO (that we call here LISICON, from the family of superionic conductors to which LGPO belongs) and of the two experimentally known phases of LGPS, quasi-orthorhombic (called thio-LISICON) and tetragonal. We extract diffusion coefficients from fixed-cell simulations in the canonical ensemble and we study dynamical stability from variable-cell simulations in the isobaric-isothermal ensemble. The main outcome of this work is that, according to these simulations, although tetragonal LGPO is less stable than its orthorhombic allotrope, it exhibits a much higher conductivity, comparable to that ...

Latest version: v1
Publication date: Jan 22, 2021


Yield strength and misfit volumes of NiCoCr and implications for short-range-order

DOI10.24435/materialscloud:s4-g3

Binglun Yin, William Curtin

  • The face-centered cubic medium-entropy alloy NiCoCr has received considerable attention for its good mechanical properties, uncertain stacking fault energy, etc, some of which have been attributed to chemical short-range order (SRO). Here, we examine the yield strength and misfit volumes of NiCoCr to determine whether SRO has measurably influenced mechanical properties. Polycrystalline strengths show no systematic trend with different processing conditions. Measured misfit volumes in NiCoCr are consistent with those in random binaries. Yield strength prediction of a random NiCoCr alloy matches well with experiments. Finally, we show that standard spin-polarized density functional theory (DFT) calculations of misfit volumes are not accurate for NiCoCr. This implies that DFT may be inaccurate for other subtle structural quantities such as atom-atom bond distance so that caution is required in drawing conclusions about NiCoCr based on DFT. These findings all lead to the conclusion ...

Latest version: v1
Publication date: Jan 22, 2021


Mid-infrared radiative emission from bright hot plasmons in graphene

DOI10.24435/materialscloud:sa-by

Laura Kim, Seyoon Kim, Pankaj Jha, Victor Brar, Harry Atwater

  • The decay dynamics of excited carriers in graphene have attracted wide scientific attention, as the gapless Dirac electronic band structure opens up relaxation channels that are not allowed in conventional materials. We report Fermi-level-dependent mid-infrared emission in graphene originating from a previously unobserved decay channel: hot plasmons generated from optically excited carriers. The observed Fermi-level dependence rules out Planckian light emission mechanisms and is consistent with the calculated plasmon emission spectra in photoinverted graphene. Evidence for bright hot plasmon emission is further supported by Fermi-level-dependent and polarization-dependent resonant emission from graphene plasmonic nanoribbon arrays under pulsed laser excitation. Spontaneous plasmon emission is a bright emission process as our calculations for our experimental conditions indicate that the spectral flux of spontaneously generated plasmons is several orders of magnitude higher than ...

Latest version: v1
Publication date: Jan 21, 2021


Smart local orbitals for efficient calculations within density functional theory and beyond

DOI10.24435/materialscloud:33-h8

Guido Gandus, Angelo Valli, Daniele Passerone, Robert Stadler

  • The record contains data to support our research findings regarding the development of a novel method for deriving localized basis sets in the projector augmented wave formalism, allowing to obtain a reduced basis set of atomic orbitals through the subdiagonalization of each atomic block of the Hamiltonian. The resulting local orbitals (LOs) inherit the information of the local crystal field. In the LO basis, it becomes apparent that the Hamiltonian is nearly block-diagonal, and we demonstrate that it is possible to keep only a subset of relevant LOs that provide an accurate description of the physics around the Fermi level. This reduces to some extent the redundancy of the original basis set, and at the same time, it allows one to perform post-processing of DFT calculations, ranging from the interpretation of electron transport to extracting effective tight-binding Hamiltonians, very efficiently and without sacrificing the accuracy of the results.

Latest version: v1
Publication date: Jan 19, 2021


Analysis of minerals as electrode materials for Ca-based rechargeable batteries

DOI10.24435/materialscloud:3n-e8

M. Elena Arroyo-de Dompablo, Jose Luis Casals

  • Rechargeable lithium-ion batteries dominate the consumer electronics and electric vehicle markets. However, concerns on Li availability have prompted the development of alternative high energy density electrochemical energy storage systems. Rechargeable batteries based on a Ca metal anode can exhibit advantages in terms of energy density, safety and cost. The development of rechargeable Ca metal batteries requires the identification of suitable high specific energy cathode materials. This work focuses on Ca-bearing minerals because they represent stable and abundant compounds. Suitable minerals should contain a transition metal able of being reversibly reduced and oxidized, which points to several major classes of silicates and carbonates: olivine (CaFeSiO4; kirschsteinite), pyroxene (CaFe/MnSi2O6; hedenbergite and johannsenite, respectively), garnet (Ca3Fe/Cr2Si3O12; andradite and uvarovite, respectively), amphibole (Ca2Fe5Si8O22(OH)2; ferroactinolite) and double carbonates ...

Latest version: v1
Publication date: Jan 19, 2021


Magnetic exchange interactions in monolayer CrI₃ from many-body wavefunction calculations

DOI10.24435/materialscloud:2j-jz

Michele Pizzochero, Ravi Yadav, Oleg V. Yazyev

  • The marked interplay between the crystalline, electronic, and magnetic structure of atomically thin magnets has been regarded as the key feature for designing next-generation magneto-optoelectronic devices. In this respect, a detailed understanding of the microscopic interactions underlying the magnetic response of these crystals is of primary importance. Here, we combine model Hamiltonians with multireference configuration interaction wavefunctions to accurately determine the strength of the spin couplings in the prototypical single-layer magnet CrI₃. Our calculations identify the (ferromagnetic) Heisenberg exchange interaction J = −1.44 meV as the dominant term, being the inter-site magnetic anisotropies substantially weaker. We also find that single-layer CrI₃ features an out-of-plane easy axis ensuing from a single-ion anisotropy A = −0.10 meV, and predict g-tensor in-plane components gxx = gyy = 1.90 and out-of-plane component gzz  = 1.92. In addition, we assess the ...

Latest version: v1
Publication date: Jan 19, 2021


On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments

DOI10.24435/materialscloud:6v-c9

Luis M. Mateo, Qiang Sun, Kristjan Eimre, Carlo A. Pignedoli, Tomas Torres, Roman Fasel, Giovanni Bottari

  • In this record we provide data to support our recent findings on the synthesis of porphyrin-capped graphene nanoribbons. On-surface synthesis has emerged as a powerful tool for the construction of large, planar, π-conjugated structures that are not accessible through standard solution chemistry. Among such solid-supported architectures, graphene nanoribbons (GNRs) hold a prime position for their implementation in nanoelectronics due to their manifold outstanding properties. Moreover, using appropriately designed molecular precursors, this approach allows the synthesis of functionalized GNRs, leading to nanostructured hybrids with superior physicochemical properties. Among the potential “partners” for GNRs, porphyrins (Pors) outstand due to their rich chemistry, robustness, and electronic richness, among others. However, the use of such π-conjugated macrocycles for the construction of GNR hybrids is challenging and examples are scarce. In a recent publication we report singly and ...

Latest version: v1
Publication date: Jan 19, 2021


Double-hybrid DFT functionals for the condensed phase: Gaussian and plane waves implementation and evaluation

DOI10.24435/materialscloud:ec-57

Frederick Stein, Jürg Hutter, Vladimir V. Rybkin

  • Intermolecular interactions play an important role for the understanding of catalysis, biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper treatment of short-range interactions of common density functionals with the correct description of long-range interactions of wave-function correlation methods. Up to now, there are only a few benchmark studies available examining the performance of DHDFs in condensed phase. We studied the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane waves formalism on cohesive energies of four representative dispersion interaction dominated crystal structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme grid dependence of the underlying density functional for PWRB95. The basis set superposition error (BSSE) and convergence with respect to ...

Latest version: v1
Publication date: Jan 19, 2021


Transport signatures of temperature-induced chemical potential shift and Lifshitz transition in layered type-II Weyl semimetal TaIrTe4

DOI10.24435/materialscloud:rz-fj

Yu Jian, QuanSheng Wu, Meng Yang, Qi Feng, Junxi Duan, Dongyun Chen, Qinsheng Wang, Wende Xiao, Youguo Shi, Oleg V. Yazyev, Yugui Yao

  • Temperature-induced Lifshitz transitions have been identified in several materials. Their chemical potential shows a substantial shift with changing temperature. The common feature of these materials is the coexistence of electron and hole pockets in the vicinity of the chemical potential. Here, we report the observation of temperature-induced chemical potential shift and Lifshitz transition in a layered type-II Weyl semimetal, TaIrTe4. The reversal of the polarity of the Hall resistivity and thermoelectric power (TEP) as the temperature increases clearly signal an appreciable shift of the chemical potential and change of the Fermi surface. It is corroborated by the improving agreement between the experimental TEP and the one calculated with temperature-dependent chemical potential. The complete disappearance of an electron pocket, consistent with the change of the Fermi surface when the chemical potential moves downwards, provides an evident signature of a temperature-induced Lifshitz transition in TaIrTe4.

Latest version: v1
Publication date: Jan 09, 2021


Large magnetoresistance and nonzero Berry phase in the nodal-line semimetal MoO2

DOI10.24435/materialscloud:hw-ws

Qin Chen, Zhefeng Hou, Shengnan Zhang, Binjie Xu, Yuxing Zhou, Huancheng Chen, Shuijin Chen, Jianhua Du, Hangdong Wang, Jinhu Yang, QuanSheng Wu, Oleg V. Yazyev, Minghu Fang

  • We performed calculations of the electronic band structure and the Fermi surface as well as measured the longitudinal resistivity ρxx(T,H), Hall resistivity ρxy(T,H), and quantum oscillations of the magnetization as a function of temperature at various magnetic fields for MoO2 with a monoclinic crystal structure. The band structure calculations show that MoO2 is a nodal-line semimetal when the spin-orbit coupling is ignored. It was found that a large magnetoresistance reaching 5.03 × 10^4% at 2 K and 9 T, its nearly quadratic field dependence, and a field-induced up-turn behavior of ρxx(T), the characteristics common for many topologically nontrivial as well as trivial semimetals, emerge also in MoO2. The observed properties are attributed to a perfect charge-carrier compensation, evidenced by both calculations relying on the Fermi surface topology and the Hall resistivity measurements. Both the observation of negative magnetoresistance for the magnetic field along the current ...

Latest version: v1
Publication date: Jan 09, 2021


Linear and quadratic magnetoresistance in the semimetal SiP2

DOI10.24435/materialscloud:ay-bf

Yuxing Zhou, Zhefeng Lou, Shengnan Zhang, Huancheng Chen, Qin Chen, Binjie Xu, Jianhua Du, Jinhu Yang, Hangdong Wang, Chuanying Xi, Li Pi, QuanSheng Wu, Oleg V. Yazyev, Minghu Fang

  • Multiple mechanisms for extremely large magnetoresistance (XMR) found in many topologically nontrivial/trivial semimetals have been theoretically proposed, but experimentally it is unclear which mechanism is responsible in a particular sample. In this paper, by the combination of band structure calculations, numerical simulations of magnetoresistance (MR), Hall resistivity, and de Haas-van Alphen (dHvA) oscillation measurements, we studied the MR anisotropy of SiP2 which is verified to be a topologically trivial, incomplete compensation semimetal. It was found that as magnetic field H is applied along the a-axis, the MR exhibits an unsaturated nearly linear H dependence, which was argued to arise from incomplete carriers compensation. For the H // [101] orientation, an unsaturated nearly quadratic H dependence of MR up to 5.88 × 10^4%(at 1.8 K, 31.2 T) and field-induced up-turn behavior in resistivity were observed, which was suggested due to the existence of hole open orbits ...

Latest version: v1
Publication date: Jan 09, 2021


Correlated states in twisted double bilayer graphene

DOI10.24435/materialscloud:be-eq

Cheng Shen, Yanbang Chu, QuanSheng Wu, Na Li, Shuopei Wang, Yanchong Zhao, Jian Tang, Jieying Liu, Jinpeng Tian, Kenji Watanabe, Takashi Taniguchi, Rong Yang, Zi Yang Meng, Dongxia Shi, Oleg V. Yazyev, Guangyu Zhang

  • Electron–electron interactions play an important role in graphene and related systems and can induce exotic quantum states, especially in a stacked bilayer with a small twist angle. For bilayer graphene where the two layers are twisted by the ‘magic angle’, flat band and strong many-body effects lead to correlated insulating states and superconductivity. In contrast to monolayer graphene, the band structure of untwisted bilayer graphene can be further tuned by a displacement field, providing an extra degree of freedom to control the flat band that should appear when two bilayers are stacked on top of each other. Here, we report the discovery and characterization of displacement field-tunable electronic phases in twisted double bilayer graphene. We observe insulating states at a half-filled conduction band in an intermediate range of displacement fields. Furthermore, the resistance gap in the correlated insulator increases with respect to the in-plane magnetic fields and we find ...

Latest version: v1
Publication date: Jan 09, 2021


Multi-scale approach for the prediction of atomic scale properties

DOI10.24435/materialscloud:tr-t9

Andrea Grisafi, Jigyasa Nigam, Michele Ceriotti

  • Electronic nearsightedness is one of the fundamental principles that governs the behavior of condensed matter and supports its description in terms of local entities such as chemical bonds. Locality also underlies the tremendous success of machine-learning schemes that predict quantum mechanical observables -- such as the cohesive energy, the electron density, or a variety of response properties -- as a sum of atom-centred contributions, based on a short-range representation of atomic environments. One of the main shortcomings of these approaches is their inability to capture physical effects, ranging from electrostatic interactions to quantum delocalization, which have a long-range nature. Here we show how to build a multi-scale scheme that combines in the same framework local and non-local information, overcoming such limitations. We show that the simplest version of such features can be put in formal correspondence with a multipole expansion of permanent electrostatics. The ...

Latest version: v1
Publication date: Jan 07, 2021


High-performance NiOOH/FeOOH electrode for OER catalysis

DOI10.24435/materialscloud:ex-va

Patrick Gono, Alfredo Pasquarello

  • The outstanding performance of NiOOH/FeOOH-based oxygen evolution reaction (OER) catalysts is rationalized in terms of a bifunctional mechanism involving two distinct active sites. In this mechanism, the OOH_ads reaction intermediate, which unfavorably affects the overall OER activity due to the linear scaling relationship, is replaced by O2 adsorbed at the active site on FeOOH, and H_ads adsorbed at the NiOOH substrate. Here, we use the computational hydrogen electrode method to assess promising models of both the FeOOH catalyst and the NiOOH hydrogen acceptor. These two materials are interfaced in various ways to evaluate their performance as bifunctional OER catalysts. In some cases, overpotentials as low as 0.16 V are found, supporting the bifunctional mechanism as a means to overcome the limitations imposed by linear scaling relationships.

Latest version: v1
Publication date: Jan 04, 2021


Emergence of nontrivial low-energy Dirac fermions in antiferromagnetic EuCd2As2

DOI10.24435/materialscloud:3r-86

Junzhang Ma, Han Wang, Simin Nie, Changjiang Yi, Yuanfeng Xu, Hang Li, Jasmin Jandke, Wulf Wulfhekel, Yaobo Huang, Damien West, Pierre Richard, Alla Chikina, Vladimir Strocov, Joël Mesot, Hongming Weng, Shengbai Zhang, Youguo Shi, Tian Qian, Hong Ding, Ming Shi

  • When magnetism meets topology, colorful novel states can be created in materials. The realization of magnetic topological Dirac materials remains a major issue in topological physics studies. In this work, it is ascertained that the topologically nontrivial ground state of EuCd2As2 is a good candidate for different types of magnetic topological state: magnetic topological Dirac semimetal, axion insulator, antiferromagnetic TCI, and higher order topological insulator. This documents include all the raw data in the reference Advanced Materials 32, 1907565 (2020). This files contains all the raw data that published in the related paper. Fig.1.zip includes dat format transport measurement results which can be open by Origin. Fig.2.zip contains ibw format ARPES spectra which can be opened by IGOR. Fig.3.zip contains figures of the calculated FS, band structure. The dat format files can be open by IGOR. Fig.4.zip contains both ARPES spectra and STS data. sxm format file can be opened by ...

Latest version: v1
Publication date: Jan 02, 2021


Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories

DOI10.24435/materialscloud:vh-wc

John Perdew, Adrienn Ruzsinszky, Jianwei Sun, Niraj Nepal, Aaron Kaplan

  • Strong correlations within a symmetry-unbroken ground-state wavefunction can show up in approximate density functional theory as symmetry-broken spin-densities or total densities, which are sometimes observable. They can arise from soft modes of fluctuations (sometimes collective excitations) such as spin-density or charge-density waves at non-zero wavevector. In this sense, an approximate density functional for exchange and correlation that breaks symmetry can be more revealing (albeit less accurate) than an exact functional that does not. The examples discussed here include the stretched H2 molecule, antiferromagnetic solids, and the static charge-density wave/Wigner crystal phase of a low-density jellium. Time-dependent density functional theory is used to show quantitatively that the static charge density wave is a soft plasmon. More precisely, the frequency of a related density fluctuation drops to zero, as found from the frequency moments of the spectral function, calculated ...

Latest version: v3
Publication date: Dec 30, 2020


Molecular dynamics based cohesive law for epoxy-graphene interfaces

DOI10.24435/materialscloud:d4-bj

Jiadi Fan, Alexandros Anastassiou, Christopher Macosko, Ellad Tadmor

  • Molecular dynamics (MD) simulations are performed to obtain mode I and II fracture energies and cohesive laws for bulk epoxy and interfaces formed between epoxy and single-layer graphene (SLG), multilayer graphene (MLG), and multilayer graphene oxide (MLGO). The elastic moduli and ultimate tensile and shear strengths of epoxy--graphene interfaces are calculated from uniaxial tension and simple shear loadings. The results show that Young's modulus and the ultimate tensile strength increase relative to bulk epoxy, whereas the shear modulus and ultimate shear strength are reduced. Failure of epoxy--graphene interfaces in tension occurs due to the formation of voids in the epoxy. Failure in shear is due to tangential slipping at the interface. Under mixed mode conditions, the shear modulus and shear strength decrease with increasing tensile load. The critical energy release rate G_c for the studied epoxy--SLG/MLG/MLGO systems are obtained using a continuum fracture mechanics approach ...

Latest version: v1
Publication date: Dec 23, 2020


High performance Wannier interpolation of Berry curvature and related quantities with WannierBerri code

DOI10.24435/materialscloud:1r-8w

Stepan S. Tsirkin

  • The article presents a series of methods that boost the speed of Wannier interpolation by several orders of magnitude, as well as their implementation in the WannierBerri code. The present dataset contains input files, scripts, and the resulting data, which allow to reproduce the examples and figures published in the article. The current version of the code is also included.

Latest version: v1
Publication date: Dec 23, 2020


Tailoring interfacial properties in CaVO3 thin films and heterostructures with SrTiO3 and LaAlO3: A DFT+DMFT study

DOI10.24435/materialscloud:kf-h1

Sophie Beck, Claude Ederer

  • In this paper we use density functional theory combined with dynamical mean-field theory (DFT+DMFT) to study interface effects between the correlated metal CaVO3 and the two typical substrate materials SrTiO3 and LaAlO3. We find that the CaVO3/SrTiO3 interface has only a marginal influence on the CaVO3 thin film, with the dominant effect being the (bulklike) epitaxial strain imposed by the large lattice mismatch, rendering the CaVO3 film insulating due to the enhanced orbital polarization related to the strong level splitting between the t2g orbitals. In contrast, at the polar CaVO3/LaAlO3 interface, the presence of the interface can have a huge effect on the physical properties, depending both on the specific interface termination and on the specific boundary conditions imposed by the multilayer geometry. We compare three approaches to modeling the CaVO3/LaAlO3 interface, all of which impose a different set of (electrostatic) boundary conditions. Our results demonstrate that ...

Latest version: v1
Publication date: Dec 22, 2020


Calculation and interpretation of classical turning surfaces in solids

DOI10.24435/materialscloud:2h-zq

Aaron Kaplan, Stewart Clark, Kieron Burke, John Perdew

  • Classical turning surfaces of Kohn-Sham potentials separate classically-allowed regions (CARs) from classically-forbidden regions (CFRs). They are useful for understanding many chemical properties of molecules, but need not exist in solids, where the density never decays to zero. At equilibrium geometries, we find that CFRs are absent in perfect metals, rare in covalent semiconductors at equilibrium, but common in ionic and molecular crystals. In all materials, CFRs appear or grow as the internuclear distances are uniformly expanded. They can also appear at a monovacancy in a metal. Calculations with several approximate density functionals and codes confirm these behaviors. A classical picture of conduction suggests that CARs should be connected in metals, and disconnected in wide-gap insulators, and is confirmed in the limits of extreme compression and expansion. Surprisingly, many semiconductors have no CFR at equilibrium, a key finding for density functional construction. ...

Latest version: v1
Publication date: Dec 22, 2020


Identifying the trade-off between intramolecular singlet fission requirements in donor-acceptor copolymers

DOI10.24435/materialscloud:xj-9d

J. Terence Blaskovits, Maria Fumanal, Sergi Vela, Raimon Fabregat, Clemence Corminboeuf

  • Intramolecular singlet fission (iSF) has shown potential to improve the power conversion efficiency in photovoltaic devices by promoting the splitting of a photon-absorbing singlet exciton into two triplet excitons within a single molecule. Among different possibilities, the donor-acceptor modular strategy of copolymers has shown great promise in its ability to undergo iSF under certain conditions. However, the number of iSF donor-acceptor copolymers reported in the literature remains remarkably narrow and clear trends for the molecular design of better candidates have not yet been established. In this work, we identify the trade-off between the main iSF requirements of the donor-acceptor strategy and formulate design rules that allow them to be tuned simultaneously in a fragment-based approach. Based on a library of 2944 donor-acceptor copolymers, we establish simple guidelines to build promising novel materials for iSF. These consist in (1st) selecting an acceptor core with high ...

Latest version: v1
Publication date: Dec 22, 2020


Four- and twelve-band low-energy symmetric Hamiltonians and Hubbard parameters for twisted bilayer graphene using ab-initio input

DOI10.24435/materialscloud:y6-dy

Arkadiy Davydov, Kenny Choo, Mark H. Fischer, Titus Neupert

  • A computationally efficient workflow for obtaining low-energy tight-binding Hamiltonians for twisted bilayer graphene, obeying both crystal and time-reversal symmetries is presented in this work. The Hamiltonians at the first magic angle are generated using the Slater-Koster approach with parameters obtained by a fit to ab-initio data at larger angles. Low-energy symmetric four-band and twelve-band Hamiltonians are constructed using the Wannier90 software. The advantage of our scheme is that the low-energy Hamiltonians are purely real and are obtained with the maximum-localization procedure to reduce the spread of the basis functions. Finally, we compute extended Hubbard parameters for both models within the constrained random phase approximation (cRPA) for screening, which again respect the symmetries. The workflow is straightforwardly transferable to other twisted multi-layer materials.

Latest version: v1
Publication date: Dec 22, 2020


Local polarization in oxygen-deficient LaMnO3 induced by charge localization in the Jahn-Teller distorted structure

DOI10.24435/materialscloud:m9-9d

Chiara Ricca, Nicolas Niederhauser, Ulrich Aschauer

  • The functional properties of transition metal perovskite oxides are known to result from a complex interplay of magnetism, polarization, strain, and stoichiometry. Here, we show that for materials with a cooperative Jahn-Teller distortion, such as LaMnO3 (LMO), the orbital order can also couple to the defect chemistry and induce novel material properties. At low temperatures, LMO exhibits a strong Jahn-Teller distortion that splits the eg orbitals of the high-spin Mn3+ ions and leads to alternating long, short, and intermediate Mn-O bonds. Our DFT+U calculations show that, as a result of this orbital order, the charge localization in LMO upon oxygen vacancy formation differs from other manganites, like SrMnO3, where the two extra electrons reduce the two Mn sites adjacent to the vacancy. In LMO, relaxations around the defect depend on which type of Mn-O bond is broken, affecting the d-orbital energies and leading to asymmetric and hence polar excess electron localization with ...

Latest version: v2
Publication date: Dec 22, 2020


Thermomechanical properties of honeycomb lattices from internal-coordinates potentials: the case of graphene and hexagonal boron nitrides

DOI10.24435/materialscloud:4k-51

Francesco Libbi, Nicola Bonini, Nicola Marzari

  • Lattice dynamics in low-dimensional materials and, in particular, the quadratic behaviour of the flexural acoustic modes play a fundamental role in their thermomechanical properties. A first-principles evaluation of these can be very demanding, and can be affected by numerical noise that breaks translational or rotational invariance. In order to overcome these challenges, we study the Gartstein internal-coordinate potential and tune its 13 parameters on the first-principles interatomic force constants for graphene. We show that the resulting potential not only reproduces very well the phonon dispersions of graphene, but also those of carbon nanotubes of any diameter and chirality. The addition of a cubic term allows also to reproduce the dominant anharmonic terms, leading to a very good estimate of the lattice thermal conductivity. Finally, this potential form works very well also for boron nitride, provided it is fitted on the short-range (analytical) part of the interatomic ...

Latest version: v2
Publication date: Dec 22, 2020


A data-driven perspective on the colours of metal-organic frameworks

DOI10.24435/materialscloud:cc-j6

Kevin Maik Jablonka, Seyed Mohamad Moosavi, Mehrdad Asgari, Christopher Ireland, Luc Patiny, Berend Smit

  • Colour is at the core of chemistry and has been fascinating humans since ancient times. It is also a key descriptor of optoelectronic properties of materials and is used to assess the success of a synthesis. However, predicting the colour of a material based on its structure is challenging. In this work, we leverage subjective and categorical human assignments of colours to build a model that can predict the colour of compounds on a continuous scale, using chemically meaningful reasoning. In the process of developing the model, we also uncover inadequacies in current reporting mechanisms. For example, we show that the majority of colour assignments are subject to perceptive spread that would not comply with common printing standards. To remedy this, we suggest and implement an alternative way of reporting colour that is more suitable for a data-driven approach to materials science.

Latest version: v1
Publication date: Dec 22, 2020


Molecular mechanism of gas solubility in liquid: constant chemical potential molecular dynamics simulations

DOI10.24435/materialscloud:k5-t2

Narjes Ansari, Tarak Karmakar, Michele Parrinello

  • Accurate prediction of gas solubility in a liquid is crucial in many areas of chemistry, and a detailed understanding of the molecular mechanism of the gas solvation continues to be an active area of research. Here, we extend the idea of the constant chemical potential molecular dynamics (CμMD) approach to the calculation of the gas solubility in the liquid under constant gas chemical potential conditions. As a representative example, we utilize this method to calculate the isothermal solubility of carbon dioxide in water. Additionally, we provide microscopic insight into the mechanism of solvation that preferentially occurs in areas of the surface where the hydrogen network is broken.

Latest version: v1
Publication date: Dec 07, 2020


Controlling the quantum spin Hall edge states in two-dimensional transition metal dichalcogenides

DOI10.24435/materialscloud:cg-q0

Artem Pulkin, Oleg V. Yazyev

  • Two-dimensional transition metal dichalcogenides (TMDs) of Mo and W in their 1T′ crystalline phase host the quantum spin Hall (QSH) insulator phase. We address the electronic properties of the QSH edge states by means of first-principles calculations performed on realistic models of edge terminations of different stoichiometries. The QSH edge states show a tendency to have complex band dispersions and coexist with topologically trivial edge states. We nevertheless identify two stable edge terminations that allow isolation of a pair of helical edge states within the band gap of TMDs, with monolayer 1T′-WSe2 being the most promising material. We also characterize the finite-size effects in the electronic structure of 1T′-WSe2 nanoribbons. Our results provide guidance to the experimental studies and possible practical applications of QSH edge states in monolayer 1T′-TMDs.

Latest version: v1
Publication date: Dec 06, 2020


In situ high-energy X-ray diffraction of a CuZr-based metallic glass

DOI10.24435/materialscloud:nn-38

Jiri Orava, Shanoob Balachandran, Xiaoliang Han, Olga Shuleshova, Ebrahim Nurouzi, Ivan Soldatov, Steffen Oswald, Olof Gutowski, Oleh Ivashko, Ann-Christin Dippel, Martin v. Zimmermann, Yurii P. Ivanov, A. Lindsay Greer, Dierk Raabe, Michael Herbig, Ivan Kaban

  • There is much current work on metallic glasses (MGs). The field is making rapid advances and has opened up questions of fundamental scientific interest. Metallic glasses are known to suffer from poor formability. Among other methods of improving the mechanical properties of MGs, introducing deformable crystalline phases into MGs is beneficial for enhancing the plastic compliance of MGs. The definition of the principal phase transformations (on heating and on cooling) underlying the feasibility of such a method is the focus of the deposited in situ high-energy XRD data carried out at Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany. This archive entry contains the temporal evolution of the equilibrium and metastable phases on flash-annealing (heating and cooling) and during containerless solidification via electromagnetic levitation with an unprecedented timescale of ~4 ms.

Latest version: v1
Publication date: Dec 05, 2020


Electronic transport across quantum dots in graphene nanoribbons: Toward built-in gap-tunable metal-semiconductor-metal heterojunctions

DOI10.24435/materialscloud:cd-gr

Kristiāns Čerņevičs, Oleg V. Yazyev, Michele Pizzochero

  • The success of all-graphene electronics is severely hindered by the challenging realization and subsequent integration of semiconducting channels and metallic contacts. Here, we comprehensively investigate the electronic transport across width-modulated heterojunctions consisting of a graphene quantum dot of varying lengths and widths embedded in a pair of armchair-edged metallic nanoribbons, of the kind recently fabricated via on-surface synthesis. We show that the presence of the quantum dot enables the opening of a width-dependent transport gap, thereby yielding built-in one-dimensional metal-semiconductor-metal junctions. Furthermore, we find that, in the vicinity of the band edges, the conductance is subject to a smooth transition from an antiresonant to a resonant transport regime upon increasing the channel length. These results are rationalized in terms of a competition between quantum-confinement effects and quantum dot-to-lead coupling. Overall, our work establishes ...

Latest version: v1
Publication date: Dec 04, 2020


Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

DOI10.24435/materialscloud:az-b2

Nicolas Mounet, Marco Gibertini, Philippe Schwaller, Davide Campi, Andrius Merkys, Antimo Marrazzo, Thibault Sohier, Ivano E. Castelli, Andrea Cepellotti, Giovanni Pizzi, Nicola Marzari

  • Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozens of 2D materials have been successfully synthesized or exfoliated. Here, we search for novel 2D materials that can be easily exfoliated from their parent compounds. Starting from 108423 unique, experimentally known three-dimensional compounds we identify a subset of 5619 that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van-der-Waals density-functional theory, validated against experimental structural data and calculated random-phase-approximation binding energies, allow to identify 1825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 ...

Latest version: v4
Publication date: Dec 02, 2020


Pyrene-based metal organic frameworks

DOI10.24435/materialscloud:z5-ct

F. Pelin Kinik, Andres Ortega-Guerrero, Daniele Ongari, Christopher P. Ireland, Berend Smit

  • Pyrene is one of the most widely investigated aromatic hydrocarbons due to its unique optical and electronic properties. Hence, pyrene-based ligands have been investigated for the synthesis of metal-organic frameworks (MOFs) in the last few years. This dataset collects the atomic structures of the pyrene-based MOFs discussed in Table 1 of Ref. 1. The crystal structures have been manually curated to resolve partial occupancies and remove solvent molecules. Charge-neutral structures were optimized using DFT following the CURATED protocol described in 10.1021/acscentsci.9b00619.

Latest version: v2
Publication date: Dec 01, 2020


Fast Bayesian force fields from active learning: study of inter-dimensional transformation of stanene

DOI10.24435/materialscloud:qg-99

Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti, Boris Kozinsky

  • Gaussian process (GP) regression is one promising technique of constructing machine learning force fields with built-in uncertainty quantification, which can be used to monitor the quality of model predictions. A current limitation of existing GP force fields is that the prediction cost grows linearly with the size of the training data set, making accurate GP predictions slow. In this work, we exploit the special structure of the kernel function to construct a mapping of the trained Gaussian process model, including both forces and their uncertainty predictions, onto spline functions of low-dimensional structural features. This method is incorporated in the Bayesian active learning workflow for training of Bayesian force fields. To demonstrate the capabilities of this method, we construct a force field for stanene and perform large scale dynamics simulation of its structural evolution. We provide a fully open-source implementation of our method, as well as the training and testing examples with the stanene dataset.

Latest version: v3
Publication date: Dec 01, 2020


Small electron polarons in CsPbBr3

DOI10.24435/materialscloud:y5-kt

Nicklas Österbacka, Paul Erhart, Stefano Falletta, Alfredo Pasquarello, Julia Wiktor

  • We study the nature of excess electrons in CsPbBr3 and identify several single and double polaronic states. We emphasize the importance of proper inclusion of the self-interaction corrections for the stability of small electron polarons in this material. We demonstrate that spin–orbit coupling (SOC) has a significant impact on the energetics of the polaronic states. In particular, we find that SOC disfavors electron localization and leads to different polaronic geometries. Additionally, by carrying out thermodynamic integration, we show that small electron polarons are thermally stabilized in CsPbBr3. The small energy differences between the localized and delocalized electronic states could possibly reconcile the apparently conflicting properties of high charge-carrier mobilities and low recombinations rates.

Latest version: v1
Publication date: Dec 01, 2020


Reverse dark current in organic photodetectors and the major role of traps as source of noise

DOI10.24435/materialscloud:sq-wv

Jonas Kublitski, Andreas Hofacker, Bahman K. Boroujeni, Johannes Benduhn, Vasileios C. Nikolis, Christina Kaiser, Donato Spoltore, Hans Kleemann, Axel Fischer, Frank Ellinger, Koen Vandewal, Karl Leo

  • Organic photodetectors have promising applications in low-cost imaging, health monitoring and near infrared sensing. Recent research on organic photodetectors based on donor-acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 10^13 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By ...

Latest version: v1
Publication date: Nov 26, 2020


Oxynitride thin films versus particle-based photoanodes: a comparative study for photoelectrochemical solar water splitting

DOI10.24435/materialscloud:p7-yt

Fatima Haydous, Max Doebeli, Wenpig Si, Friedrich Waag, Fei Li, Ekaterina Pomjakushina, Alexander Wokaun, Bibal Gökce, Daniele Pergolesi, Thomas Lippert

  • The solar water splitting process assisted by semiconductor photocatalysts attracts growing research interests worldwide for the production of hydrogen as a clean and sustainable energy carrier. Due to their optical and electrical properties several oxynitride materials show great promise for the fabrication of efficient photocatalysts for solar water splitting. This study reports a comparative investigation of particle- and thin films-based photocatalysts using three different oxynitride materials. The absolute comparison of the photoelectrochemical activities favors the particle-based electrodes due to the better absorption properties and larger electrochemical surface area. However, thin films surpass the particle-based photoelectrodes due to their more suitable morphological features that improve the separation and mobility of the photo-generated charge carriers. Our analysis identifies what specific insights into the properties of materials can be achieved with the two complementary approaches.

Latest version: v1
Publication date: Nov 25, 2020


Improved photoelectrochemical water splitting of CaNbO2N photoanodes by Co-Pi photodeposition and surface passivation

DOI10.24435/materialscloud:yz-bc

Fatima Haydous, Wenping Si, Vitaly Guzenko, Friedrich Waag, Ekaterina Pomjakushina, Mario El Kazzi, Laurent Sévery, Alexander Wokaun, Daniele Pergolesi, Thomas Lippert

  • Photoelectrochemical solar water splitting is a promising approach to convert solar energy into sustainable hydrogen fuel using semiconductor electrodes. Due to their visible light absorption properties, oxynitrides have shown to be attractive photocatalysts for this application. In this study, the influence of the preparation method of CaNbO2N particles on their morphological and optical properties, and thereby their photoelectrochemical performance, is investigated. The best performing CaNbO2N photoanode is produced by ammonolysis of Nb enriched calcium niobium oxide. The enhanced photoactivity arises from an enlarged surface area and superior visible light absorption properties. The photoactivity of this photoanode was further enhanced by photodeposition of Co-Pi co-catalyst and by atomic layer deposition of an Al2O3 overlayer. A photocurrent density of 70 mA at 1.23 V vs RHE was achieved. The observed enhancement of the photoelectrochemical performance after Co-Pi/Al2O3 ...

Latest version: v1
Publication date: Nov 25, 2020


Yttrium tantalum oxynitride multiphases as photoanodes for water oxidation

DOI10.24435/materialscloud:az-s2

Wenping Si, Zahra Pourmand-Tehrania, Fatima Haydous, Nicola Marzari, Ivano E. Castelli, Daniele Pergolesi, Thomas Lippert

  • Perovskite yttrium tantalum oxynitride is theoretically proposed as a promising semiconductor for solar water splitting because of the predicted bandgap and energy positions of band edges. In experiment, however, we show here that depending on processing parameters, yttrium tantalum oxynitrides exist in multiphases, including the desired perovskite YTaON2, defect fluorite YTa(O,N,o)4, and N-doped YTaO4. These multiphases have bandgaps ranging between 2.13 and 2.31 eV, all responsive to visible light. The N-doped YTaO4, perovskite main phase, and fluorite main phase derived from crystalline fergusonite oxide precursors exhibit interesting photoelectrochemical performances for water oxidation, while the defect fluorite derived from low crystallized scheelite-type oxide precursors show negligible activity. Preliminarily measurements show that loading IrOx cocatalyst on N-doped YTaO4 significantly improves its photoelectrochemical performance encouraging further studies to optimize this new material for solar fuel production.

Latest version: v1
Publication date: Nov 25, 2020


Suppressed charge recombination in hematite photoanode via protonation and annealing

DOI10.24435/materialscloud:sf-pv

Wenping Si, Fatima Haydous, Daniele Pergolesi, Thomas Lippert

  • Hematite as promising photoanode for solar water splitting suffers from severe bulk and surface charge recombination. This work describes that a protonation−annealing treatment can effectively suppress both bulk and surface charge recombination in hematite. Protons/electrons are electrochemically incorporated into hematite under 0.2 VRHE followed by annealing at 120 °C. The photocurrent density increases from ∼0.9 to 1.8 mA cm−2 at 1.23 VRHE under 1 sun, and further to 2.7 mA cm−2 after loading cobalt phosphate, stabilizing at round 2.4 mA cm−2. A cathodic shift of the onset potential of photocurrent is also observed. H2O2 oxidation, impedance spectroscopy, and Mott−Schottky measurements show that the protonation suppresses bulk recombination and enhances donor density, but introducing more surface recombination. The annealing reduces surface recombination, while preserving relatively high bulk charge separation efficiency. Different from previous reports on the electrochemically ...

Latest version: v1
Publication date: Nov 25, 2020


Large mobility modulation in ultrathin amorphous titanium oxide transistors

DOI10.24435/materialscloud:1t-g7

Nikhil Tiwale, Ashwanth Subramanian, Zhongwei Dai, Sayantani Sikder, Jerzy T. Sadowski, Chang-Yong Nam

  • Recently, ultrathin metal-oxide thin film transistors (TFTs) have shown very high on-off ratio and ultra sharp subthreshold swing, making them promising candidates for applications beyond conventional large-area electronics. While the on-off operation in typical TFTs results primarily from the modulation of charge carrier density by gate voltage, the high on-off ratio in ultrathin oxide TFTs can be associated with a large carrier mobility modulation, whose origin remains unknown. We investigate 3.5 nm-thick titanium oxide based ultrathin TFTs exhibiting 6-decade on-off ratio, predominantly driven by gate induced mobility modulation. The power law behavior of the mobility features two regimes, with a very high exponent at low gate voltages, unprecedented for oxide TFTs. We find that this phenomenon is well explained by the presence of high-density tail states near the conduction band edge, which supports carrier transport via variable range hopping. The observed two-exponent ...

Latest version: v1
Publication date: Nov 13, 2020


Evaluation of photocatalysts for water splitting through combined analysis of surface coverage and energy-level alignment

DOI10.24435/materialscloud:21-m1

Zhendong Guo, Francesco Ambrosio, Alfredo Pasquarello

  • To examine whether suitable conditions occur for the water splitting reaction at their interfaces with liquid water, we determine the pH-dependent surface coverage for a series of semiconductors, including GaAs, GaP, GaN, CdS, ZnO, SnO2, rutile and anatase TiO2. For this we calculate acidity constants at surface sites through ab initio molecular dynamics simulations and a grand-canonical formulation of adsorbates. The resulting pH values at the point of zero charge show excellent agreement with experiment and thereby support the validity of our approach. By combining information concerning the surface coverage with the alignment of the band edges with respect to the relevant redox levels, we scrutinize the potential of the considered semiconductors as photocatalysts and identify the corresponding optimal pH ranges for hydrogen and oxygen evolution. More specifically, our results indicate that GaN stands out among these semiconductors as the most promising candidate for the overall ...

Latest version: v1
Publication date: Nov 13, 2020


CA-9, a dataset of carbon allotropes for training and testing of neural network potentials

DOI10.24435/materialscloud:6h-yj

Daniel Hedman, Tom Rothe, Gustav Johansson, Fredrik Sandin, J. Andreas Larsson, Yoshiyuki Miyamoto

  • The use of machine learning to accelerate computer simulations is on the rise. In atomistic simulations, the use of machine learning interatomic potentials (ML-IAPs) can significantly reduce computational costs while maintaining accuracy close to that of ab initio methods. To achieve this, ML-IAPs are trained on large datasets of images, meaning atomistic configurations labeled with data from ab initio calculations. Focusing on carbon, we have created a dataset, CA-9, consisting of 48000 images labeled with energies, forces and stress tensors obtained via ab initio molecular dynamics (AIMD). We use deep learning to train state-of-the-art neural network potentials (NNPs), a form of ML-IAP, on the CA-9 dataset and investigate how training and validation data can affect the performance of the NNPs. Our results show that image generation with AIMD causes a high degree of similarity between the generated images, which has a detrimental effect on the NNPs. However, by carefully choosing ...

Latest version: v1
Publication date: Nov 11, 2020


Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations

DOI10.24435/materialscloud:vp-wm

Iurii Timrov, Nicola Marzari, Matteo Cococcioni

  • The self-consistent evaluation of Hubbard parameters using linear-response theory is crucial for quantitatively predictive calculations based on Hubbard-corrected density-functional theory. Here, we extend a recently-introduced approach based on density-functional perturbation theory (DFPT) for the calculation of the on-site Hubbard U to also compute the inter-site Hubbard V. DFPT allows to reduce significantly computational costs, improve numerical accuracy, and fully automate the calculation of the Hubbard parameters by recasting the linear response of a localized perturbation into an array of monochromatic perturbations that can be calculated in the primitive cell. In addition, here we generalize the entire formalism from norm-conserving to ultrasoft and projector-augmented wave formulations, and to metallic ground states. After benchmarking DFPT against the conventional real-space Hubbard linear response in a supercell, we demonstrate the effectiveness of the present extended ...

Latest version: v1
Publication date: Nov 09, 2020


Li₄₋ₓGe₁₋ₓPₓO₄, a potential solid-state electrolyte for all-oxide microbatteries

DOI10.24435/materialscloud:3a-9v

Elisa Gilardi, Giuliana Materzanini, Leonid Kahle, Max Doebeli, Steven Lacey, Xi Cheng, Nicola Marzari, Daniele Pergolesi, Andreas Hintennach, Thomas Lippert

  • Solid-state electrolytes for Li-ion batteries are attracting growing interest as they allow building safer batteries, also using lithium-metal anodes. Here, we studied a compound in the lithium superionic conductor (LISICON) family, i.e. Li₄₋ₓGe₁₋ₓPₓO₄ (LGPO). Thin films were deposited via pulsed laser deposition, and their electrical properties were compared to those of ceramic pellets. A detailed characterization of their microstructures shows that thin films can be deposited fully crystalline at higher temperatures but also partially amorphous at room temperature. The conductivity is not strongly influenced by the presence of grain boundaries, exposure to air, or lithium deficiencies. First-principles molecular dynamics simulations were employed to calculate the lithium-ion diffusion profile and the conductivity at various temperatures of the ideal LGPO crystal. Simulations give the upper limit of conductivity for a defect-free crystal, which is in the range of 10–2 S cm–1 at ...

Latest version: v1
Publication date: Nov 06, 2020


3D ordering at the liquid–solid polar interface of nanowires

DOI10.24435/materialscloud:tx-2p

Mahdi Zamani, Giulio Imbalzano, Nicolas Tappy, Duncan T. L. Alexander, Sara Martí-Sánchez, Lea Ghisalberti, Quentin M. Ramasse, Martin Friedl, Gözde Tütüncüoglu, Luca Francaviglia, Sebastien Bienvenue, Cécile Hébert, Jordi Arbiol, Michele Ceriotti, Anna Fontcuberta i Morral

  • The nature of the liquid–solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid–solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic‐scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration. An interplay between the liquid ordering and the formation of a new bilayer is revealed, which, contrary to the established theories, suggests that the preference for a certain polarity and polytypism is influenced by the atomic structure of the interface. The conclusions of this work open new avenues for the understanding of crystal growth, as well as other processes and systems involving a liquid–solid interface.

Latest version: v1
Publication date: Nov 05, 2020


Showing: 100 of 339 records